
Université Paris-Saclay

École doctorale de mathématiques Hadamard (ED 574)

Génération automatique de maillages et méthodes d’adaptation (INRIA)

Mémoire présenté pour l’obtention du

Diplôme d’habilitation à diriger les recherches
Discipline : Mathématiques

par

Adrien Loseille

Génération et Adaptation de Maillages pour le Calcul Scientifique

Rapporteurs :
Prénom NOM
Prénom NOM
Prénom NOM

Date de soutenance : Jour Mois Année

Composition du jury :

Prénom NOM (Rapporteur)
Prénom NOM (Rapportrice)
Prénom NOM (Présidente)
Prénom NOM (Examinateur)
Prénom NOM (Examinatrice)
Prénom NOM (Examinateur)
Prénom NOM (Invité)

ii

Résumé

Cette introduction en français présente de manière très succincte quelques problématiques de
recherche qui sont présentées plus en détail dans la suite. Pour l’ensemble du manuscript,
les citations ayant une numérotation numérique, comme [1] sont relatives à mes publications,
données dans l’introduction, les autres concernent la bibliographie générale contenue à la fin du
manuscript.

Dans le cadre de la simulation numérique, l’adaptation de maillage est une stratégie visant à
modifier automatiquement la discrétisation du domaine de calcul pour contrôler la précision de la
solution numérique d’un système d’équations aux dérivées partielles (EDP) [FG08]. Son efficacité
repose sur un couplage complexe entre l’estimateur d’erreur, les algorithmes de génération de
maillages adaptés et le solveur numérique. Réussir ce couplage permet alors de diminuer le
temps de calcul, de réduire le nombre de degrés de liberté (gain mémoire) et d’améliorer la
précision de la solution numérique. Ces gains sont d’autant plus importants que les phénomènes
physiques en jeu sont anisotropes. Cependant, la prise en compte de l’anisotropie fragilise et
complexifie le processus adaptatif limitant considérablement les gains réels par rapport aux
gains théoriques attendus. Les thématiques et problématiques de recherche présentées dans ce
manuscript concernent l’amélioration des performances du processus adaptatif à la fois sur les
points théoriques et algorithmiques. Les principaux axes de recherche concernent:

. L’élaboration d’un cadre théorique et pratique pour l’adapation de maillages
basés sur la dualité entre maillages discrets et espaces Riamanniens.

. Le développement d’algorithmes de maillage générique, parallèle et robuste
permettant de générer plusieurs milliards de tétraèdres en quelques minutes pour
des maillages anisotropes et en géométries complexes.

. Le développement de nouvelles technologies de maillage adaptif comme les ap-
proches metric-aligned ou metric-orthogonal permettant d’améliorer drastiquement
la qualité des maillages anisotropes, pour une meilleure précision tout en minimisant
le coût de calcul.

Dans les mailleurs adaptatifs, les espaces Riemanniens servent à définir le calcul des dis-
tances [19]. Cependant, ces espaces vont bien au delà d’une simple définition de distances. Ils
constituent également un outil théorique puissant pour l’estimation d’erreur car ils permettent
de s’affranchir des contraintes liées aux maillages discrets: forme géométrique des éléments, posi-
tions des points . . . Le fondement théorique repose sur des égalités mathématiques liant l’erreur
d’interpolation discrète à l’erreur d’interpolation continue [11, 12]. On montre alors qu’à un
unique maillage continu optimal correspondait un ensemble infini de maillages discrets. Chaque
représentant discret est simplement lié au choix de la méthode pratique utilisée pour générer le
maillage. Ce concept allie donc à la fois un outil mathématique simplifiant l’analyse d’erreur
pour décrire les maillages optimaux mais aussi une méthode algorithmique permettant de générer
un maillage discret approprié. Cette double caractéristique discret-continu est complètement

iv

originale. Elle se différencie des approches classiques d’estimation [Verfürth 1996, Cao 2005]
qui négligent souvent l’aspect algorithmique pourtant nécessaire à la génération effective du
maillage optimal. L’adaptation de maillage multi-échelles [58] est issue du concept de mail-
lage continu et propose un estimateur d’erreur anisotrope basé sur l’erreur d’interpolation.
Elle permet de lever un ensemble de verrous théoriques et pratiques liés aux estimateurs clas-
siques [Peraire 1987, Castro-Díaz 1997]. D’une part, elle offre l’avantage de raffiner l’ensemble
des échelles de la solution permettant ainsi de générer des maillages très anisotropes. En 3D,
l’anisotropie est généralement bornée à des élancements de 1 pour 10 pour les approches clas-
siques [Frey 2005, Remacle 2005] alors que l’on dépasse 1 pour 1000 avec l’approche multi-
échelles. D’autre part, elle offre des garanties sur la consistance du schéma numérique quel
que soit la régularité de l’écoulement. La prise en compte dans l’analyse d’erreur des perfor-
mances des schémas numériques est une innovation en adaptation anisotrope. Cela contribue
à l’excellente synergie entre le schéma numérique et la physique, ce qui permet d’obtenir une
précision qui est inaccessible sur des maillages uniformes ou adaptés d’une manière isotrope. Les
espaces Riemanniens et la dualité avec les maillages discrets sont utilisés dans tous les chapitres
du manuscrit. En particulier, dans le Chapitre 4, l’extension de cette dualité pour des approx-
imations d’ordre élevées est présentée, démontrant d’autant plus l’intêret théorique et pratique
de ces espaces pour l’adaptation de maillage.

Sur le plan algorithmique, un nouveau module complet de génération de maillage fortement
anisotrope et robuste est implémenté depuis 2010. Le principal enjeu est de parvenir à coupler
l’anisotropie et la robustesse qui ont des comportements antagonistes. Une première stratégie
simple d’adaptation consiste à vérifier la précision des nouveaux éléments créés explicitement
par des fonctions qualités spécifiques chaque étape modifiant le maillage. L’algorithme de re-
maillage, pour le volume, s’appuie sur l’application successive d’opérateurs simples (insertion
d’un point sur une arête ou suppression d’une arête) qui modifient le maillage de manière lo-
cale. Le choix d’effectuer une opération particulière repose sur un critère global de qualité. On
utilise l’algorithme de recuit simulé [Kirkpatrick 1983] à l’on accepte initialement de dégrader la
qualité du maillage de manière aléatoire pour arriver à une méthode d’optimisation stricte à la
fin du processus. Sous cette forme, la stratégie d’adaptation reposant sur le nouveau module de
génération de maillages adaptés permet d’obtenir un niveau d’anisotropie dans le volume jamais
atteint auparavant [54] dans le cas d’écoulement non turbulent et ce, sans compromis sur la
qualité du maillage nécessaire pour garantir la stabilité du solveur numérique. Cette stratégie
est décrite dans la Chapitre 1. Une approche plus générique et performante, via l’opérateur
de cavité, est ensuite introduite au Chapitre 2. Cet opérateur généralise tous les opérateurs de
modification de maillages. Il permet de générer des maillages hybrides (de couches limites) ou de
gérer de manière robuste une forte anisotropie près des géométries complexes pour, par exemple,
capturer les fortes interactions entre chocs et couches limites dans des écoulements turbulents.

Une des problématiques majeures pour utiliser (et transférer) l’adaptation de maillages aux
problèmes industriels est liée au parallélisme. En effet, beaucoup de solveurs utilisent de manière
efficace les architectures HPC (algèbre linéaire, partitionnement de domaine, . . .) alors que les
logiciels de maillage restent principalement séquentiels. Les raisons de ce décalage sont multiples.
Le premier est lié à la multitude d’opérateurs qu’il est difficile de paralléliser : insertion de points,
suppression d’arêtes, bascule d’arêtes ou de faces. De plus, les structures de données ne sont pas

v

statiques mais dynamiques car elles évoluent au cours du temps. Enfin, les partitionneurs de
domaines visent à minimiser les communications entre les processus, ce qui n’est pas nécessaire
en maillage. Pour contrer ces effets, , Il est nćessaire de proposer un partitionneur de domaine
hiérarchique capable de prédire les charges de calcul spécifiques aux mailleurs. L’utilisation d’un
unique opérateur de cavité permet de se libérer de la la contrainte de devoir paralléliser tous
les composants. Avec cette stratégie, il est possible de générer plusieurs milliards de tétraèdres
en 20 minutes sur des clusters de calcul standards, composés d’une centaine de cœurs. Cette
extension de l’opérateur de cavité est présenté au Chapitre 3.

Les algorithmes de maillages anisotropes doivent contrôler des grandeurs antinomiques. Il
faut à la fois garantir une forte anisotropie, car c’est elle qui donne le gain en terme de temps de
calcul et de précision, mais aussi la qualité du maillage. C’est cette dernière qui permet la sta-
bilité du solveur utilisé. Jusqu’à présent, la qualité des maillages anisotropes rest très mauvaise
comparativement aux méthodes traditionnelles en maillage uniforme (frontales ou Delaunay).
Cela constitue un frein à la diffusion de l’adaptation. Pour améliorer drastiquement cette qual-
ité, il est possible d’étendre les approches classiques en ajoutant des contraintes directionnelles.
Ces méthodes, dite metric-aligned ou metric-orthogonal, suivents alors des directions privilégiées
pour proposer des points positionnés de manière optimale dans le domaine. Ces directions provi-
ennent soit de la métrique (définissant l’orientation souhaitée et l’anisotropie), soit des directions
de courbure de la surface. Avec cette approche, la qualité des maillages, notamment des angles,
est drastiquement améliorée. On atteint des qualités équivalentes aux méthodes traditionnelles.
Les impacts sont multiples. Les solveurs convergent plus vite et le nombre d’itérations pour
converger le problème global est réduit. Cette approche est décrite dans le Chapitre 3.

vi

A brief introduction

In this manuscript, I synthesize my research as a full-time research scientist at INRIA since
2011. My research has been focusing on the core components of anisotropic mesh adaptation
employed to obtain high-fidelity numerical predictions of complex nonlinear PDEs. This includes
the development of adaptive mesh generation algorithms and the derivation of anisotropic error
estimates. However, these two fields of research are not self-sufficient. They always require a
numerical prediction provided by an external solver. Depending on the field of applications,
many collaborations have been built to validate and challenge my research. So, I would like
to thank from the very beginning all my research partners. Without their inputs, this research
would not have been possible. In this thesis, most of the examples rely on Wolf (INRIA) solver by
F. Alauzet. This includes examples from compressible flows mechanics: sonic-boom prediction,
drag and high-lift studies. Feflo (GMU) by R. Löhner and SU2 (Stanford) solvers have been
used for similar applications. Cedre (Onera) with W. Ghedhaifi and E. Montreuille, has been
used for the prediction of contrail formation. Ananas (Lemma Ing.) is used for incompressible
bi-fluid dynamics with application to the petroleum and spacial industry. Coffee (CNRS) by
S. Chaillat is used for acoustic waves propagation using the Boundary Element Method (BEM).

I would like to also thank my co-workers from the Unstructured Grid Adaptation Working
Group, mainly M. Park (NASA) and T. Michal (Boeing), my mentors : P. L. George (INRIA)
and R. Löhner (GMU) for mesh generation and A. Dervieux (INRIA) for error estimations, and
of course, all the students and post-docs that have been always highly motivated and dedicated
to this research.

To enlighten the collaborations, each chapter introduction is followed by the list of associated
publications along with the list of collaborators and students involved in the work.

Scientific context and challenges

The rapid advance of both computer hardware and physical simulation capabilities has revo-
lutionized science and engineering, placing computational simulation on an equal footing with
theoretical analysis and physical experimentation. When very approximated numerical mod-
els were used in the 80s with 3D meshes composed of less than 10 000 elements, nowadays,
fully detailed complex models are used in the analysis, and the size of the computations are
routinely of the order of 107 − 109 degrees of freedom. This reliance on the predictive capabil-
ities has created the need for an accurate control of numerical errors (having a strong impact
on these predictions). In this context, mesh adaptation has a prominent role since the qual-
ity of the mesh, its refinement and its alignment with the physics, has major contributions
to the numerical errors. It is now widely admitted that a single computation is not enough
to assess a numerical prediction [Slotnick 2014], therefore multiplying the computations is re-
quired as in Uncertainty Quantification or in a mesh adaptation process. This puts an even
stronger constraint, in terms of reliability or CPU time efficiency, on the required qualities of
an adaptive mesh generation process. If the mesh generation capabilities of commercial pack-
ages [Csimsoft , Distene , PointWise] have made significant progresses for the generation of the

viii

first mesh, including more robustness in CAD (Geometry) imports, CAD cleaning, faster or
more reliable surface and 3D mesh generations, there is still little interest both in the scientific
community and from commercial providers to offer anisotropic adaptive capabilities.

Geometry: CAD Mesh Generation Computation Visualization/Analysis

Figure 1 – Computational pipeline

The mesh generation process is one of the crucial components of the computational pipeline
(Fig. 1). The quality of the mesh will directly impact the quality of the numerically predicted
quantities of interest. The properties of the mesh, alignment, density and orientation, will
impact the stability and accuracy of the computation. In addition, it is now widely acknowl-
edged that adaptive simulations [38] are required to gain confidence in numerical results. For
instance, adaptive meshing has been seen as one the major bottleneck for future CFD analysis
in the 2030 NASA report on the future of Computational Fluid Dynamics (CFD) [Slotnick 2014]
and in the dedicated report [38] focusing exclusively on mesh adaptation. Naive mesh refine-
ment techniques (i.e. where the mesh size is divided by two at each step) cannot be used in
practice as the number of degrees of freedom is multiplied by 8 at each step, leading to very
large mesh very rapidly. It is then necessary to consider more elaborate techniques, such as
automatic mesh adaptation to assess numerical simulations. Standard meshing techniques, e.g.
the advancing front techniques [Löhner 1988a, Marcum 2013] or the constrained Delaunay ap-
proach [Borouchaki 2000a, George 2003a], are now very mature to generate an unstructured
mesh even in the presence of very complex geometries. However their extension to generate
adaptive meshes is difficult, if not almost impossible for the advancing front method. In ad-
dition, the core components of these legacy approaches have not bring too much attention
from the meshing community from the past 10 years. In the meantime, new classes of numer-
ical schemes simulating more complex physics have emerged, putting more constrains on the
mesh generation process. Hybrid elements or high-order curved elements are now a classical
requirement. The generation of each kind of mesh has been considered so far as a standalone
problem [Aubry 2009, Marcum 2013, Remacle 2012, Ruiz-Gironès 2016a] without adaptivity in
mind.

The core motivation of my research is then to explore a mathematically sounded mesh gen-
eration framework complying with all kinds of meshes at once and having in mind the absolute
necessity of an adaptive mesh strategy. Additional mesh requirements are imposed by the diver-
sity of the current computing platforms, with different levels of parallelism. Modern numerical
solvers are now using advantageously emerging architectures, e.g. GPU or Xeon Phi. If no
specific attention is devoted to mesh generation or adaptation, it may become again in the next
years, the bottleneck of realistic computations (i.e., to really push the level of fidelity in the
computation). In practice, this may prevent the scientific community to explore highly accurate
and reliable solutions and have more insights in complex physical phenomena such as turbulence
in the context of CFD. The meshing framework has to offer competitive CPU timings compared

ix

to state-of-the-art parallelized solvers. This is especially true in the adaptive context where
sequences of meshes and solutions are generated and computed iteratively.

From a meshing point-of-view, my main contributions are based on the development of a
unique cavity-based framework. Indeed, this framework extends the classical Delaunay-based
insertion. A constrained version allows to generate hybrid meshes as classically required to
generate boundary layer meshes. This operator is described in Chapter 2. Its parallel extension
and quality enhancements, with so called metric-aligned and metric-orthogonal approaches are
summarized in Chapter 3.

From an error estimate point of view, my main contributions concern the development of
the continuous mesh framework. This framework allows to recast standard error estimates
(interpolation based) in a continuous setting. These errors estimates are anisotropic by nature.
Classical error estimates based on this framework are reviewed in Chapter 1. Extensions to
control numerical solution with high-order approximations are reviewed in Chapter 4.

The manuscript is organized as follows:

Chapter 1. This chapter provides a quick review of the standard meshing pipeline and em-
phasizes all the mathematical and algorithmic background to implement a basic but robust 3D
anisotropic local remesher. All the developments are based on Riemannian metric fields. They
are manipulated at a continuous level to derive error estimates while discrete operators are used
during the mesh generation phase. I also review past contributions related to the derivation
of error estimates to control interpolation or approximation error on PDEs. Several examples,
mostly from Computational Fluids Dynamics (CFD), are commented. In particular, I illustrate
that these error estimates allow to recover an optimal order of convergence of the underlying
numerical scheme, even if discontinuities are present in the flow field.

Chapter 2. This chapter details the implementation of the "unique cavity-based" framework
that extends traditional Delaunay-based mesh generation methods. We show that this approach
allows to encompass and generalize all traditional local remeshing operators. It allows the gen-
eration of boundary layer mesh as well by using a constrained version of the operator. We
illustrate that a high-level of flexibility and reliability is obtained. In comparison with previous
examples, much more complex physics and geometries are involved. All simulations are solutions
of the Reynolds-Averaged Navier-Stokes (RANS) equations where there exists a strong interac-
tion between the boundary layer and the outer field. In particular, a higher level of anisotropy
(O(1 − 100000)) is required to capture these interactions. In addition, the geometry is much
more complex and the fidelity of the surface mesh evolving during the refinement is capital to
ensure the convergence of quantities of interest like lift or drag.

Chapter 3. The chapter reviews two enhancements to the cavity-based framework. This in-
cludes two drastic improvements for the quality of anisotropic mesh generation with the metric-
aligned and metric-orthogonal approaches. These approaches use additional information in the
Riemannian metric field (as orientation and natural alignment) to generate high-quality surface
and volume meshes. The parallel implementation of the operator is also reviewed. The use of a
cavity-operator yields on a fully predictable process in terms of CPU with respect to the input
mesh and desired metric. Examples of anisotropic meshes composed with more than a billion
tetrahedra are generated on small size cluster (120 processors) within 15 minutes.

x

Chapter 4. This chapter reviews some contributions related to mesh adaptation when high-
order numerical schemes (Discontinuous Galerkin, spectral elements) are used. In this case, all
the error estimates of Chapter 1 are no more suited to control the anisotropy of the solution. The
local error is then represented by high-order homogenous polynomials. The strong nonlinearity
makes the finding of anisotropy difficult. We present the log-simplex approach that allows
to bound the variation these high-order polynomials by quadratic functions to a given power.
Additional challenges like high-order pixel-exact rendering or high-order meshing techniques for
CAD geometry are also discussed.

Chapter 5. The last chapter is a short general discussion on the perspectives for adaptive mesh
generation to fit upcoming computational architectures and numerical schemes to address the
future challenges described in [Slotnick 2014].

Supervising activities

During this period, I have co-advised 6 PhD students, 3 Postdocs and 4 Research engineers.

Supervised PhD students

2010-2013 E. Mbinky, PhD co-supervised at 50% with F. Alauzet, on Anisotropic mesh adaptation for
very high order numerical schemes. Publication [51] is related to this work.

2012-2015 V. Menier, PhD co-supervised at 50% with F. Alauzet, on Numerical Methods and Mesh
Adaptation for Reliable RANS Simulations. Publications [9, 44, 48] are related to this work.

2015-2018 L. Frazza, PhD co-supervised at 50% with F. Alauzet, on 3D anisotropic mesh adaptation
for Reynolds Averaged Navier-Stokes simulations. Publications [3, 5, 28, 29] are related to
this work.

2016-2019 R. Feuillet, PhD co-supervised at with F. Alauzet and P. Ciarlet, on Embedded and high-
order meshes: two alternatives to linear body-fitted meshes. Publications [2, 26, 32, 33] are
related to this work.

2018-2021 L.-M. Tenkès, PhD co-supervised at 50% with F. Alauzet, on Methods for generating quad-
dominant and hex-dominant adaptive meshes for CFD applications.

2019-2022 L. Rochery, PhD on Methods for generating adaptive high-order curved meshes.

Supervised post-doctoral students

2015-2017 O. Coulaud, Postdoc supervised at 100%, on Anisotropic mesh adaptation for very-high order
interpolates in 3D. Publications are related to this work [26, 37].

2015-2016 S. Groth, Postdoc supervised at 50% with S. Chaillat (INRIA Poems), on Anisotropic mesh
adaptation for the Boundary Element Methods. Publication [6] is related to this work.

2016-2017 F. Amlani, Postdoc supervised at 50% with S. Chaillat (INRIA Poems), on Anisotropic mesh
adaptation for the Boundary Element Methods. Publication [4] is related to this work.

Author’s bibliography xi

Supervised research engineers

2011-2013 J. Castelneau, supervised at 100%, onMesh visualization and modification on ViZiR software.

2014-2015 A. Loyer, supervised at 50% with H. Guillard (INRIA Castor), on Meshing framework for
Tokamac simulations.

2015-2016 Q. Arnoldus, supervised at 50% with D. Marcum (MSU), on Mesh visualization and modifi-
cation software for modern architectures and high-order solution visualization.

2019- M. Maunoury, supervised at 100%, on Mesh visualization high-order solution visualization
for ViZiR4 project.

These engineers have participated on the developments of the Adaptive Mesh Generation suite,
see pyamg.saclay.inria.fr.

Publications

[1] R. Feuillet and A. Loseille, On pixel-exact rendering for high-order mesh and solution, Sub-
mitted, 2020.

[2] R. Feuillet, A. Loseille and F. Alauzet, Optimization of meshes and applications, Computer-
Aided Design, Vol 124 pp. 1-20, 2020. [pdf]

[3] L Frazza, A Loseille, A Dervieux, F Alauzet, Nonlinear corrector for Reynolds-averaged
Navier-Stokes equations, International Journal for Numerical Methods in Fluids, Vol 91(11),
pp. 557-585, 2019. [pdf]

[4] F. Amlani, S. Chaillat and A. Loseille, An efficient preconditioner for adaptive Fast Multi-
pole accelerated Boundary Element Methods to model time-harmonic 3D wave propagation,
Computer Methods in Applied Mechanics and Engineering, Vol 352, pp. 189-210, 2019. [pdf]

[5] A. Loseille, L. Frazza and F. Alauzet, Comparing anisotropic adaptive strategies on the 2nd
AIAA sonic boom workshop geometry, Journal of Aircraft. Vol 56(3), 2018, [pdf]

[6] S. Chaillat, S. P. Groth and A. Loseille, Metric-based anisotropic mesh adaptation for 3D
acoustic boundary element methods, Journal of Computational Physics, Vol 372, pp. 473-499,
2018. [pdf]

[7] F. Alauzet, A. Loseille and G. Olivier, Time-Accurate multi-scale anisotropic mesh adapta-
tion for unsteady flows in CFD, Journal of Computational Physics, Vol 373, pp. 28-63, 2018.
[pdf]

[8] A. Carabias, A. Belme, A. Loseille and A. Dervieux, Anisotropic Goal-oriented error analysis
for a third order accurate CENO Euler discretization, International Journal for Numerical
Methods in Fluids, Vol 86, Issue 6, pp. 392-413, 2018. [pdf]

[9] A. Loseille, F. Alauzet and V. Menier, Unique cavity-based operator and hierarchical do-
main partitioning for fast parallel generation of anisotropic meshes, Computer-Aided Design,
Vol 85, pp. 53-67, 2017. [pdf].

http://pyamg.saclay.inria.fr
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4764
https://www.sciencedirect.com/science/article/pii/S0010448520300397?dgcid=author
https://www.sciencedirect.com/science/article/pii/S0045782519302294
https://arc.aiaa.org/doi/pdf/10.2514/1.C034840
https://www.sciencedirect.com/science/article/pii/S0021999118304261
https://www.sciencedirect.com/science/article/pii/S0021999118304212
http://dx.doi.org/10.1002/fld.4423
http://www.sciencedirect.com/science/article/pii/S0010448516301142

xii Author’s bibliography

[10] F. Alauzet and A. Loseille, A decade of progress on anisotropic mesh adaptation for com-
putational fluid dynamics, Computer-Aided Design, Vol 72, pp. 13-39, 2016. [pdf]

[11] A. Loseille and F. Alauzet, Continuous mesh framework, Part I: well-posed continuous
interpolation error, SIAM Journal on Numerical Analysis, Vol 49, pp. 38-60, 2011. [pdf].

[12] A. Loseille and F. Alauzet, Continuous mesh framework, Part II: validations and applica-
tions, SIAM Journal on Numerical Analysis, Vol 49, pp. 61-86, 2011. [pdf].

[13] A. Loseille, A Dervieux and F. Alauzet, Fully anisotropic goal-oriented mesh adaptation for
3D steady Euler equations, Journal of Computational Physics, Vol. 229, Issue 8, pp. 2866-
2897, 2010. [pdf].

[14] F. Alauzet and A. Loseille, High order sonic boom modeling based on adaptive techniques,
Journal of Computational Physics, Vol. 229, Issue 3, pp. 561-593, 2010. [pdf].

[15] Y. Bourgault, M. Picasso, F. Alauzet and A. Loseille, On the use of anisotropic a posteriori
error estimators for the adaptive solution of 3D inviscid compressible flows, International
Journal for Numerical Methods in Fluids, Vol. 59, Issue 1, pp. 47-74, 2009. [pdf].

[16] F. Alauzet, S. Borel-Sandou, L. Daumas, A. Dervieux, Q. Dinh, S. Kleinveld, A. Loseille,
Y. Mesri and G. Rog, Multi-model and multi-scale optimization strategies. Application to
sonic boom reduction, European Journal of Computational Mechanics, Vol. 17, Issue 1-2,
pp. 191-214, 2008. [pdf].

[17] A. Dervieux, Y. Mesri, F. Alauzet, A. Loseille, L. Hascoet and B. Koobus, Continuous mesh
adaptation models for CFD, CFD Journal, Vol. 16, Issue 4, pp. 346-355, 2008. [pdf].

Books and book chapters

[18] F. Alauzet, A. Dervieux, L. Frazza and A. Loseille, Numerical uncertainties estimation
and mitigation by mesh adaption, Uncertainty Management for Robust Industrial Design
in Aeronautics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Edited
by C. Hirsch, D. Wunsch, J. Szumbarski, L. Łaniewski-Wołłk, J. Pons-Prats J, Springer,
Vol. 140, pp. 89-107, 2019.

[19] P.L. George, H. Borouchaki, F. Alauzet, P. Laug, A. Loseille and L. Marchal, Maillage,
modélisation et simulation numérique, Volume 2, ISTE ditions, 2018.

[20] P.L. George, H. Borouchaki, F. Alauzet, P. Laug, A. Loseille and L. Marchal, Meshing,
Geometric Modeling and Numerical Simulation, Volume 2, ISTE ditions and Wiley, 2019.

[21] A. Loseille, Mesh generation and adaptation, Handbook on Numerical Methods for Hyper-
bolic Problems: Applied and Modern Issues, Chapter 12, Edited by R. Abgrall and C.-W.
Shu, Elsevier, 2017 [link].

[22] P.L. George, H. Borouchaki, F. Alauzet, P. Laug, A. Loseille, D. Marcum and L. Marchal,
Mesh generation and mesh adaptivity: theory and practice, Encyclopedia of Computational

https://www.sciencedirect.com/science/article/pii/S0010448515001517
http://dx.doi.org/10.1137/090754078
http://dx.doi.org/10.1137/10078654X
http://dx.doi.org/10.1016/j.jcp.2009.12.021
http://dx.doi.org/10.1016/j.jcp.2009.09.020
http://dx.doi.org/10.1002/fld.1797
http://dx.doi.org/10.3166/remn.17.245-269
http://direct.bl.uk/research/2F/38/RN230319519.html
http://www.sciencedirect.com/science/article/pii/S1570865916300357?via%3Dihub

Author’s bibliography xiii

Mechanics, Edited by E. Stein, R. de Borst and T.J.R. Hughes, John Wiley & Sons, Ltd.,
2016.

[23] M. Picasso and A. Loseille, Anisotropic, Adaptive Finite Elements for a Thin 3D Plate,New
Challenges in Grid Generation and Adaptivity for Scientific Computing, SEMA SIMAI
Springer Series, Vol 5, pp. 217-230, 2015,

Editorial work

[24] 27th International Meshing Roundtable in Lecture Notes in Computational Science and
Engineering, Edited by X. Roca and A. Loseille, Springer Nature, 2019. [pdf]

[25] Guest editor for Computer-Aided Design, Elsevier, 2019.

Proceedings with peer review

[26] R. Feuillet, O. Coulaud, A. Loseille, Anisotropic Error Estimate for High-order Parametric
Surface Mesh Generation, 28th International Meshing Roundtable, 2019

[27] V. Chmielarski, W. Ghedhaifi, E. Montreuil, A. Loseille, Comparison between RANS and
hybrid RANS/LES simulations of jet/vortex interaction,AIAA Aviation Forum, 2019. [pdf]

[28] L. Frazza, A. Loseille, F. Alauzet, Unstructured anisotropic mesh adaptation for 3D RANS
turbomachinery applications, AIAA Aviation Forum, 2019. [pdf]

[29] M. A. Park, A.Balan, W. K Anderson, M. C. Galbraith, P. Caplan, H. A. Carson, T.
R. Michal, J. A. Krakos, D. S. Kamenetskiy, A. Loseille, F. Alauzet, L.Frazza, N. Barral,
Verification of unstructured grid adaptation components, AIAA Aviation Forum, 2019. [pdf]

[30] M. A. Park, W. L. Kleb, W. T. Jones, J. A. Krakos, T. R. Michal, A. Loseille, R. Haimes
and J. Dannenhoffer, Geometry Modeling for Unstructured Mesh Adaptation, AIAA Aviation
Forum, 2019. [pdf]

[31] C. Tsolakis, N. Chrisochoides, M. A. Park, A. Loseille and T. R. Michal, Parallel Anisotropic
Unstructured Grid Adaptation, AIAA SciTech, 2019. [pdf]

[32] R, Feuillet, A, Loseille, F. Alauzet, P2 Mesh Optimization Operators, 27th International
Meshing Roundtable, Lecture Notes in Computational Science and Engineering, vol 127,
pp. 3-21, 2018. [pdf]

[33] A. Loseille and R. Feuillet, ViZiR: High-order mesh and solution visualization using
OpenGL 4.0 graphic pipeline, AIAA SciTech, 2018. [pdf]

[34] Emmanuel Montreuil, W. Ghedhaifi, V. Chmielaski, F. Vuillot, F. Gand and A. Lo-
seille , Numerical Simulation of contrail formation on the Common Research Model
wing/body/engine configuration, AIAA SciTech, 2018. [pdf]

https://www.springer.com/gb/book/9783030139919
https://doi.org/10.2514/6.2019-3405
https://arc.aiaa.org/doi/abs/10.2514/6.2019-3059
https://doi.org/10.2514/6.2019-1723
https://arc.aiaa.org/doi/10.2514/6.2019-2946
https://arc.aiaa.org/doi/10.2514/6.2019-1995
https://link.springer.com/chapter/10.1007/978-3-030-13992-6_1
https://arc.aiaa.org/doi/10.2514/6.2018-1174
https://arc.aiaa.org/doi/10.2514/6.2018-3189

xiv Author’s bibliography

[35] M. A. Park, N. Barral, D.Ibanez, D.S. Kamenetskiy, J. A. Krakos, T. R. Michal and A.
Loseille. Unstructured Grid Adaptation and Solver Technology for Turbulent Flows, AIAA
Scitech, 2018. [pdf]

[36] F. Alauzet, A. Loseille and D. Marcum. On a robust boundary layer mesh generation
process, AIAA Scitech, 2017. [pdf]

[37] O. Coulaud and A. Loseille, Very High Order Anisotropic Metric-Based Mesh Adaptation
in 3D, Procedia Engineering, Vol. 163, pp. 353-365, 2016. [pdf]

[38] M. A. Park, J. Krakos, T. R. Michal, A. Loseille and J. J. Alonso, Unstructured Grid
Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision
2030, 46th AIAA Fluid Dynamics Conference, AIAA Aviation, 2016.

[39] A. Loseille, V. Menier and F. Alauzet, Parallel Generation of Large-size Adapted Meshes,
Procedia Engineering, Vol 124, pp. 57-69, 2015, [pdf].

[40] M. A. Park, A. Loseille, J. A. Krakos, and T. R. Michal, Comparing Anisotropic Output-
Based Grid Adaptation Methods by Decomposition, 22nd AIAA Computational Fluid Dy-
namics Conference, AIAA Aviation, 2015.

[41] D. Luquet, R. Marchiano, F. Coulouvrat, I. S. El Din, and A. Loseille, Sonic Boom As-
sessment of a Hypersonic Transport Vehicle with Advanced Numerical Methods, 22nd AIAA
Computational Fluid Dynamics Conference, AIAA Aviation, 2015.

[42] A. Loseille, A. Dervieux, and F. Alauzet, Anisotropic Norm-Oriented Mesh Adaptation for
Compressible Flows, 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech, 2015.

[43] A. Loseille, D. L. Marcum, and F. Alauzet, Alignment and orthogonality in anisotropic
metric-based mesh adaptation, 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech, 2015.

[44] V. Menier, A. Loseille, and F. Alauzet, Multigrid Strategies Coupled with Anisotropic Mesh
Adaptation,53rd AIAA Aerospace Sciences Meeting, AIAA SciTech, 2015.

[45] A. Loseille, Metric-orthogonal Anisotropic Mesh Generation, Procedia Engineering, Vol 82,
pp. 403-415, 2014, [pdf]

[46] I. S. El Din, F. Dagrau and A. Loseille, Computational and Experimental Assessment of
Models for the First AIAA Sonic Boom Prediction Workshop Using Adaptive High Fidelity
CFD methods, 32nd AIAA Applied Aerodynamics Conference, AIAA Aviation, 2014.

[47] V Menier, A. Loseille and F. Alauzet, CFD Validation and Adaptivity for Viscous Flow
Simulations, 7th AIAA Theoretical Fluid Mechanics Conference, AIAA Aviation, 2014.

[48] A. Loseille and V. Menier, Serial and Parallel Mesh Modification Through a Unique Cavity-
Based Primitive, Proceedings of the 22nd International Meshing Roundtable, pp. 541-558,
2013,

[49] A. Loseille and R. Löhner, Cavity-Based Operators for Mesh Adaptation, AIAA Scitech,
2013

https://arc.aiaa.org/doi/10.2514/6.2018-1103
https://arc.aiaa.org/doi/abs/10.2514/6.2017-0585
https://www.sciencedirect.com/science/article/pii/S187770581633380X
http://www.sciencedirect.com/science/article/pii/S1877705815032233
http://www.sciencedirect.com/science/article/pii/S1877705814016798

Author’s bibliography xv

[50] A. Loseille and R. Löhner, Robust Boundary Layer Mesh Generation, Proc. in 21th Inter-
national Meshing Roundtable, San Jose, CA, USA, 2012, [Preprint].

[51] E. Mbinky, F. Alauzet and A. Loseille, Higher order interpolation for mesh adaptation,
Short Research note, 21th International Meshing Roundtable, San Jose, CA, USA, 2012,
[Preprint].

[52] A. Loseille and R. Löhner, Boundary layer mesh generation and adaptivity, 49th AIAA
Aerospace Sciences Meeting, AIAA 2011-0894, Olando, FL, USA, 2011, [Preprint].

[53] R. Löhner and A. Loseille, A simple scheme to limit refinement zones for supersonic
flows, 49th AIAA Aerospace Sciences Meeting, AIAA 2011-0470, Olando, FL, USA, 2011,
[Preprint].

[54] A. Loseille and R. Löhner, Adaptive anisotropic simulations in Aerodynamics, 48th AIAA
Aerospace Sciences Meeting, AIAA 2010-169, Olando, FL, USA, 2010, [Preprint].

[55] A. Loseille, A. Dervieux and F. Alauzet, A 3D goal-oriented anisotropic mesh adaptation
applied to inviscid flows in Aeronautics, 48th AIAA Aerospace Sciences Meeting, AIAA 2010-
1067, Orlando, FL, USA, 2010, [Preprint].

[56] F. Alauzet and A. Loseille, High-order sonic boom prediction by utilizing mesh adaptive
methods, 48th AIAA Aerospace Sciences Meeting, AIAA 2010-1390, Orlando, FL, USA, 2010,
[Preprint].

[57] A. Loseille and R. Löhner, On 3D anisotropic local remeshing for surface, volume, and
boundary layers, Proc. in 18th International Meshing Roundtable, Springer-Verlag, pp. 611-
630, Salt-Lake City, UT, USA, 2009, [Preprint], [doi].

[58] A. Loseille and F. Alauzet, Optimal 3D highly anisotropic mesh adaptation based on
the continuous mesh framework, Proc. in 18th International Meshing Roundtable, Springer-
Verlag, pp. 575-594, Salt-Lake City, UT, USA, 2009, [Preprint], [doi].

[59] F. Alauzet and A. Loseille, On the use of space filling curves for parallel anisotropic mesh
adaptation, Proc. in 18th International Meshing Roundtable, Springer-Verlag, pp. 337-357,
Salt-Lake City, UT, USA, 2009, [Preprint], [doi].

[60] A. Dervieux, A. Loseille and F. Alauzet, High-order adaptive method applied to high speed
flows, Proc. of WEHSFF2007, Moscow, Russia, 2007, [Preprint].

[61] L. Agelas, A. Benali, S. Benteboula, A. Claisse, P. Hav and A. Loseille, Co-refinement of
fault surfaces : convexification process, Vol. 24, pp. 60-76, Proc. of ESAIM2007, Luminy,
France, 2007, [doi].

[62] A. Loseille, A. Dervieux, P. Frey and F. Alauzet, Achievement of second order mesh conver-
gence for discontinuous flows with adapted unstructured meshes, 18th Computational fluids
dynamics conference, AIAA 2007-4186, Miami, FL, USA, 2007, [Preprint].

[63] F. Alauzet, A. Loseille, High-order sonic boom modeling by adaptive method, Proc. in
AAAF 2007, Sophia-Antipolis, France, 2007.

http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/loseille-imr21-bl.pdf
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/loseille-imr21-hoadap.pdf
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/AIAA-2011-894-650.pdf
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/AIAA-2011-470-745.pdf
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/AIAA-2010-169-279.pdf
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/AIAA-2010-1067-782.pdf
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/AIAA-2010-1390.pdf
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/loseille-imr18-locremeshing.pdf
http://dx.doi.org/10.1007/978-3-642-04319-2_35
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/loseille-imr18-contmesh.pdf
http://dx.doi.org/10.1007/978-3-642-04319-2_33
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/loseille-imr18-sfc.pdf
http://dx.doi.org/10.1007/978-3-642-04319-2_20
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/loseille-wehsff07.pdf
http://dx.doi.org/10.1051/proc:2008030
http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Adrien.Loseille/publication/AIAA-2007-4186.pdf

xvi Author’s bibliography

Research reports

[64] Guillard, H. and Lakhlili, J. and Loseille, A.and Loyer, A.and Nkonga, B. and Ratnani, A.
and Elarif, A., Tokamesh : A software for mesh generation in Tokamaks, INRIA RR-9230,
2018. [pdf]

[65] A. Loseille and F. Alauzet, Continuous mesh model and well-posed continuous interpolation
error estimation, INRIA RR-6846, 2009. [pdf]

[66] F. Alauzet and A. Loseille, High order sonic boom modeling by adaptive methods, INRIA
RR-6845, 2009. [pdf]

Software

[67] Feflo.a/AMG-Lib is a robust anisotropic local remeshing sotware. Surface and volume
mesh adaptation are handled in a coupled way. It also includes boundary layers mesh gen-
eration for RANS simulations. This computer program is one of the core components of the
adaptive loop. The following publications [3, 5, 6, 7, 9, 10, 18, 21, 23, 26, 27, 28, 29, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 54] use it.

The boundary layer module alone (abl4flo) is registered with the APP under nbr.
IDDN.FR.001.080032.00.S.P.2012.000.10000 The mesh adaptation module alone (ama4flo)
is registered with the APP under nbr. IDDN.FR.001.460014.000.S.P.2012.000.10000

It is composed of 500 000 lines of C/Fortran. The software is distributed by Lemma
(with the following customers EADS, PCM, Technip, Thalès, Total) and Distene (as an
anisotropic adaptive component). It has been used with multiple solvers Cedre(ONERA),
COFFEE(INRIA), Elsa(ONERA), FUN3D (NASA), ProjectX/SANS(MIT), SU2 (Stanford
University) and Wolf (INRIA).

[68] ViZiR/ViZiR4 is an interactive mesh visualization and modification software. It is in-
tended for pixel-exact rendering of high-order mesh and solution [33], see pyamg.saclay.
inria.fr for the freely available components.

It is composed 60 000 lines of C++. ViZiR has been used by the following INRIA teams :
CASTOR, ECUADOR, BACCHUS, GAMMA3, M3DESIM, POEMS, REO et TROPICS. It
is used at ONERA and MIT for accurate ordering on high-order curved meshes and solutions.
Since 2011, all post-processing and pictures for all my articles and presentations have been
based on ViZiR/ViZiR4.

[69] SHRIMP is used to perform mesh renumbering for the reduction of the cache misses. It
also allows to perform metric-based parallel mesh partitioning for parallel mesh generation.
It is one of the core components of the parallel adaptive strategy [9, 39, 48, 59].

Shrimp is composed of 16 000 lines of C. Shrimp is registered with the APP under
nbr. IDDN.FR.001.070013.000.S.P. 2009.000.10000.

[70] Metrix Metrix is a software that provides by various ways a metric field o govern the mesh
generation. Generally, these metrics are derived from error estimates (a priori or a posteriori)

https://hal.inria.fr/hal-01948060/
http://hal.archives-ouvertes.fr/inria-00370235/
http://hal.inria.fr/inria-00363206_v1/
pyamg.saclay.inria.fr
pyamg.saclay.inria.fr

Author’s bibliography xvii

applied to the numerical solution. Metrix computes metric fields from scalar solutions by
means of several error estimates: interpolation error, iso-lines error estimate, interface error
estimate and goal oriented error estimates. It also contains several modules that handle
meshes and metrics. For instance, it extracts the metric associated with a given mesh and it
performs some metric operations such as: metric gradation and metric intersection. Most of
the publications on error estimates [7, 10, 11, 12, 58, 62] are based on Metrix.

Metrix is composed of 52 000 lines of C. Metrix is registered with the APP under
nbr. IDDN.FR.001.070014.000.S.P. 2009.000.10000

xviii Author’s bibliography

Contents

1 An introduction to mesh adaptation for scientific computing 3
1.1 An introduction to unstructured mesh generation 5

1.1.1 Surface mesh generation . 5
1.1.2 Volume mesh generation . 6

1.2 Metric-based mesh adaptation . 8
1.2.1 Metric tensors in mesh adaptation . 10
1.2.2 Techniques for enhancing robustness and performance 11
1.2.3 Metric-based error estimates . 12
1.2.4 Controlling the interpolation error . 12
1.2.5 Geometric estimate for surfaces . 13
1.2.6 Boundary layers metric . 15

1.3 Algorithms for generating anisotropic meshes . 16
1.3.1 Insertion and collapse . 16
1.3.2 Optimizations and enhancements for unsteady simulations 18

1.4 Adaptive algorithm and numerical illustrations 19
1.4.1 Adaptive loop . 19
1.4.2 A wing-body configuration . 21
1.4.3 Direct sonic boom simulation . 22
1.4.4 Boundary layer shock interaction . 23
1.4.5 Double Mach reflection and blast prediction 28

1.5 Conclusion . 28

2 Unique cavity-based anisotropic framework 31
2.1 An introduction to standard boundary layer meshing techniques and adaptivity . 32
2.2 Cavity-based operators . 32

2.2.1 Extension of standard operators . 33
2.3 Optimized unit mesh generation . 37

2.3.1 Collapse . 37
2.3.2 Creation of edges . 37
2.3.3 Anisotropic filtering and insertion . 38
2.3.4 Optimization of the mesh . 38
2.3.5 Surface approximation . 39

2.4 A constrained version of the operator . 39
2.4.1 Boundary layer mesh generation by point insertion 39
2.4.2 Possible enhancements with multi-normals and merge 40
2.4.3 Boundary layer examples . 41

2.5 Numerical examples . 44
2.5.1 Contrail formation . 44
2.5.2 High-lift CRM . 46

2 Contents

2.5.3 NASA Rotor 37 and periodic mesh adaptation 46
2.6 Conclusion . 51

3 Metric-aligned, metric-orthogonal and parallelism 55
3.1 Mesh adaptation with orthogonality and alignment 55
3.2 Metric-orthogonal and metric-aligned anisotropic mesh generation 57

3.2.1 Frontal creation of vertices . 57
3.3 Numerical examples . 60
3.4 Parallel large scale mesh adaptation . 62
3.5 Hierarchical Domain partitioning . 67

3.5.1 Element work evaluation . 68
3.5.2 Partitioning methods . 72
3.5.3 Partitions balancing optimization by migration 77
3.5.4 Efficiency of the method . 77
3.5.5 Definition of the interface mesh . 77

3.6 Numerical Results . 78
3.7 Conclusion . 83

4 High-order mesh visualization and adaptation 87
4.1 High-order techniques and related issues in meshing and visualization 87
4.2 Almost pixel-exact rendering of high-order solution 89

4.2.1 High-order elements visualization . 93
4.2.2 High-order solutions visualization . 96
4.2.3 Examples of high-ordre rendering . 97

4.3 High-order mesh adaptation . 101
4.3.1 Log-simplex method . 101
4.3.2 Numerical examples . 104

4.4 High-order surface mesh generation . 105
4.4.1 Metrics for linear surface mesh generation 106
4.4.2 Computation of higher-order metrics . 110
4.4.3 Meshing process . 114

4.5 Numerical illustrations . 115

5 Conclusions and perspectives 119

Bibliography 125

Chapter 1

An introduction to mesh adaptation for
scientific computing

We first describe the well established unstructured mesh generation methods as involved in the
computational pipeline, from geometry definition to surface and volume mesh generation. These
components are always a preliminary but a mandatory step to any numerical computations.
From a historical point of view, the generation of fully unstructured mesh generation in 3D has
been a real challenge so as to design of robust and accurate second order schemes on such
unstructured meshes. If the issue of generating volume meshes for geometries of arbitrary
complexity is now mostly solved, the emergence of robust numerical schemes on unstructured
meshes has paved the way to adaptivity. Indeed, unstructured meshes in contrast with structured
or block structured grids have the necessary flexibility to control the discretization both in size
and orientation.

In the second part of this chapter, we review the main components to perform adaptative
computations: (i) anisotropic mesh prescription via a metric field tensor (ii) anisotropic error
estimates, and (iii) anisotropic mesh generation. For each component, we focus on a particularly
simple method to implement. In particular, we describe a simple but robust strategy for gener-
ating anisotropic meshes. Each adaptation entity, i.e. surface, volume or boundary layers, relies
on a specific metric tensor field. The metric-based surface estimate is then used to control the
deviation to the surface and to adapt the surface mesh. The volume estimate aims at controlling
the interpolation error of a specific field of the flow.

Several 3D examples issued from steady and unsteady simulations from systems of hyperbolic
laws are presented. In particular, we show that, despite the simplicity of the introduced adaptive
meshing scheme, a high level of anisotropy can be reached. This includes the direct prediction
of the sonic boom of an aircraft by computing the flow from the cruise altitude to the ground,
the interaction between shock waves and boundary layers, or the prediction of complex unsteady
phenomena in 3D.

The work related to this chapter is part of my early contributions. Initial developments for the
continuous mesh and metric error estimates have been done during my PhD thesis [11, 12, 14, 54].
The work on anisotropic mesh generation has been initiated during my postdoctoral time with
the following associated publications [53, 57, 58]. The simple mesh adaptation strategy has been
used on collaborative work on supersonic and hypersonic aircraft with ONERA and Dassault
Aviation [41, 46].

4 Chapter 1. An introduction to mesh adaptation for scientific computing

Introduction

For flows involved in aerospace, naval, train and automotive industries or more generally in
Computational Fluids Dynamics (CFD), the numerical prediction of a physical phenomenon fol-
lows the computational pipeline, see Fig. 1 of previous chapter. From a continuous description
of the geometry, a surface then a volume mesh is generated, see Fig. 1.1. This mesh is used as a
discrete support to solve a set of partial differential equations (PDEs) by using any typical sec-
ond order accurate numerical schemes [Abgrall 2001, Cournède 2006, Johnson 1985, Shu 1988].
When unstructured meshes are used, the meshing and computation steps have reached a great
level of maturity and automaticity, allowing to quickly modify the design and run a new simu-
lation, even for highly complex geometries [Aubry 2015, Aubry 2009, George 1990, Laug 2010,
Löhner 1988b, Marcum 1996, Marcum 2001, Mavriplis 1995]. During the mesh generation pro-
cess, the sizing of the elements [Aubry 2016] is either based on a user a priori knowledge of the
flow or is induced by the geometry. To take into account the whole flow features evaluated at
the computation step while keeping automaticity, mesh adaptivity is required.

Geometry Surface mesh Volume mesh

Computation and Analysis/Visualization

Figure 1.1 – Illustration of the computational pipeline on the Bloodhound c© supersonic car

Indeed, we observe that the solutions of nonlinear systems of PDEs like the Euler of Navier-
Stokes equations have complex features and multiscale phenomena: shock waves, boundary
layers, turbulence, . . .When dealing with complex geometries, all these features are present in
the flow field and interact with each other. It is then hardly impossible to design a tailored
mesh (by means of sources ı.e., local information) to capture all these phenomena. To capture
accurately them automatically, we typically use specific mesh adaptation procedures. We can
distinguish: (i) isotropic and structured grids for turbulent flows, (ii) anisotropic meshes for
shock capturing with an anisotropic ratio of the order of O(1 : 100 − 1000) and (iii) highly
stretched quasi-structured meshes with a ratio of O(1 : 104 − 106) for boundary-layers. Many
numerical examples have proved that the performance of a numerical scheme is bounded by
the quality and the features of the discretization. For instance, we prefer anisotropic meshes
to capture accurately shocks [62] while we use Cartesian grids at a turbulent regime to allow

1.1. An introduction to unstructured mesh generation 5

high-order capturing of vortices. In the vicinity of bodies, quasi-structured grids are employed
to capture the boundary layer in viscous simulations [Aubry 2009, Marcum 1996]. If all these
methods have now reached a good level of maturity, they are generally studied on their own.
Consequently it seems difficult to handle together all the optimal meshes for all these phenomena.
In this chapter, we will focus on one simple solution to generate all these kinds of meshes within
a common framework. In this framework, the requirements on the mesh (for sizes, shapes and
orientations) are expressed in terms of a field of metric tensors and dedicated quality functions.
We will consider metric fields issued from interpolation error, surface geometric approximation,
and boundary-layer model. These fields are then used as a continuous support to drive the
adaptation. From a practical point of view, simple anisotropic local operators as edge collapse,
point insertion, edge swapping and point smoothing are recursively used to modify and improve
the mesh. Note that each operator is monitored by a quality function to ensure that a quality
mesh is outputted. This requirement is important to ensure the stability and enhance the
performance of the flow solver.

Outline. The chapter is decomposed as follows. In Section 1, we describe the main steps involved
in generating a first mesh for complex geometries in an unstructured context. In Section 2, we
recall the main concepts of metric-based mesh adaptation. We then define various metric-field
expressions used for surface, volume, boundary layer and error control. In Section 3, we describe
the algorithms used to generate an anisotropic mesh with respect to a prescribed metric. In
Section 4, we briefly comment the adaptive loop, and we illustrate the previous concepts on
both steady and unsteady simulations.

1.1 An introduction to unstructured mesh generation

We quickly describe and illustrate on simple examples the principles underlying the generation
of unstructured meshes for complex geometries. For a complete description, we refer to the
following monographs [Frey 2008, George 1998, Lo 2015, Löhner 2001].

1.1.1 Surface mesh generation

In industrial applications, the definition of the computational domain (or of a design) is provided
by a continuous description composed by a collection of patches using a CAD (Computer Aided
Design) system. If several continuous representation of a patch exists via an implicit equation or
a solid model, we focus on the boundary representation (BREP). In this description, the topology
and the geometry are defined conjointly. For the topological part, a hierarchical description is
used from top level topological objects to lower level objects, we have:

model −→ bodies −→ faces −→ loops −→ edges −→ nodes

Each entity of upper level is described by a list of entities of lower level. This is represented
in Fig. 1.2 for an Onera M6 model, where a face, a loop and corresponding edges are depicted.
Note that most of the time, only the topology of a face is provided, the topology between all the
faces (patches) needs to be recovered. This piece of information is needed to have a watertight
valid surface mesh on output for the whole computational domain. This step makes the surface

6 Chapter 1. An introduction to mesh adaptation for scientific computing

Face
Edge

Loop

Figure 1.2 – Topology hierarchy (Face, Loop, Edge) of the continuous representation of models
using the Boundary REPresentation (BREP).

mesh generation of equal difficulty as volume mesh generation and has been shown not to be
trivial [Alleaume 2008].

For node, edge, and face, a geometry representation is also associated to the entity. For
node, it is generally the position in space, while for edge and face, a parametric representa-
tion is used. It consists in defining a mapping from a bounded domain of R2 onto R3 such
that (x, y, z) = σ(u, v) where (u, v) are the parameters. Generally, σ is a NURBS function
(Non-Uniform Rational B-Spline) as it is a common tool in geometry modeling and CAD sys-
tems [Piegl 1997]. From a conceptual point of view, meshing a parametric surface consists in
meshing a 2D domain in the parametric space. However, surface mesh generation is not as naive
as it seems, as several issues are to be faced to get a valid surface mesh:

• The mapping function is not bijective, i.e., an infinite number of parameters values may have
the same value in R3;

• A valid mesh in the parametric space may be invalid when mapped to 3D as σ is not necessary
monotone;

• Having a uniform mesh in R3 requires to have a highly anisotropic adapted mesh in R2 due
to the length distortion imposed by σ;

• The typical CAD queries (normal, tangent planes, principal curvatures) are based on the
derivatives of σ that may have undefined behaviors especially near the boundaries of the
parametric space.

We illustrate this on the mesh of a torus composed of two edges and one face, see Fig. 1.3. We
notice that if the mesh in R3 is perfectly uniform, it is not the case in the parametric space.

For further readings, the aforementioned issues of CAD parameterizations and their consequences
for adaptivity are discussed in [38]. Robust meshing of NURBS surface is studied in [Aubry 2015]
and implementation details are provided in [Laug 2010].

1.1.2 Volume mesh generation

Once the generation of the surface mesh is completed, a volume mesh is generated to fill the
domain with tetrahedra. The surface mesh then becomes an input but also a constraint as all

1.1. An introduction to unstructured mesh generation 7

Figure 1.3 – From left to right, CAD of a torus with 2 edges and one face, 2D mesh in the
parametric space, and mapped uniform surface mesh.

the input triangles have to match a face of the tetrahedral mesh. Two different approaches have
emerged and have proved to be robust w.r.t. the complexity of the geometry: the frontal and
the Delaunay methods.

The frontal approach is the easiest to understand in its principles. The process starts from
the surface mesh that defines an initial front (a set of faces). From this front, a set of optimal
points are created such that for each face of the front, an optimally shaped element would be
created. This set of points is then checked and filtered to avoid collision and overlapping of faces.
A reduced set of points is then inserted one point at a time and the front is updated. The same
procedure is repeated until the whole domain is filled. The pros of this approach is that the shape
of elements can be controlled and different kinds of meshes can be obtained by modifying the
optimal point procedure: Cartesian core, iso-tetrahedra, . . . ,see [Löhner 2001] for more details.
If meshes of very high quality are obtained when starting from isotropic surface meshes, the
critical steps is in the closure of the front. Indeed, there is no guarantee that the procedure will
end up with an empty front. This weakness tends to increase when anisotropic triangles are
present in the initial surface mesh. We refer to [Löhner 2014] for an updated description of the
frontal approach.

The second approach is a constrained Delaunay method. It starts from an initial simple
mesh of a box surrounding the surface mesh (composed of six tetrahedra). We then have the
following steps:

1. Insert the points of the surface mesh in the current mesh;

2. Recover the boundary corresponding to the initial surface mesh (list of edges and faces);

3. Fill the interior of the domain by inserting internal points;

4. Optimize the mesh with the smoothing of points and the swap of edges and faces.

Contrary to the frontal approach, a valid 3D mesh is always kept through the entire process. This
is due to the insertion procedure based on an iterative process, see Fig. 1.4. Once Step (i) is com-
pleted, some faces or edges of the initial mesh may not be present in the current mesh, a boundary

8 Chapter 1. An introduction to mesh adaptation for scientific computing

Hk Hk − Cp Hk+1 = Hk − Cp + BP

Figure 1.4 – Illustration of the incremental Delaunay insertion of a point in a mesh.

recovery step is used. It is generally used in enforcing these entities by applying successively
or randomly standard optimization operators as the swap of edges and faces [George 2003c]. In
addition, some theoretical and constructive proofs exist to show that this procedure can suc-
ceed to generate a mesh, see [George 2003a, Si 2015]. The most critical step is the second one.
However, if we accept to modify the initial surface mesh, this procedure can always succeed to
output a volume mesh with a (slightly) modified surface mesh. Consequently, this approach is
more robust than the frontal approach. The procedure is illustrated in Fig. 1.5.

Note that a lot of hybrid approaches are combinations of both. The frontal creation of points
can be used with Delaunay insertion, or the closure of the front can use a complete constrained
Delaunay approach. For the two core methods, a simple example comparing both approaches is
depicted in Fig. 1.6.

Figure 1.5 – Constrained Delaunay method. From left to right, initial surface mesh, volume
mesh after insertion of the surface points, volume mesh after boundary recovery and final mesh
by removing elements connected to the initial mesh of the surrounding box.

1.2 Metric-based mesh adaptation

If unstructured meshes have been employed primarily to handle complex geometries, their great
flexibility allows us to consider anisotropic mesh adaptation. The intent of adaptivity is then
to optimize the ratio between the level of accuracy and the CPU time to run a simulation. The
expected gain is mostly motivated by the physical features of the flow, especially for systems of

1.2. Metric-based mesh adaptation 9

Figure 1.6 – Cuts in a volume mesh filled with the frontal method (top left) and Delaunay
insertion (bottom left) and right, 2D square domain filled with frontal (top right) and Delaunay
(top bottom).

sonic boom vorticity in wake

Figure 1.7 – Examples of phenomena with strong anisotropic features concentrated in small
regions of the domain: shock waves (left), and vorticity (right).

hyperbolic laws where the solutions have strong anisotropic components. It is then clear that
using uniform meshes is not optimal (for the distribution of the degrees of freedom) to reach a
given level of accuracy. Two examples of flows with anisotropic features are given in Fig. 1.7
with a supersonic flow and the vorticity behind a business jet.

To perform anisotropic mesh adaptation, we have to define the following: (i) a directional
error estimate, (ii) a way to prescribe the desired sizes and orientations (iii) and finally a set of
mesh modification operators to generate anisotropic meshes. In this section, we introduce the
metric-based approach where continuous and discrete tensor fields are used to handle (i)-(iii).
The key idea is to generate a uniform mesh, a unit mesh, with respect to a Riemannian metric
space. More precisely, the geometric quantities as length, volume, angle, quality, . . . , are then
evaluated in this space instead of using the standard Euclidean space.

10 Chapter 1. An introduction to mesh adaptation for scientific computing

1.2.1 Metric tensors in mesh adaptation

A metric tensor field of domain Ω is a Riemannian metric space denoted by (M(x))x∈Ω, where
M(x) is a 3×3 symmetric positive definite matrix. Taking this field at each vertex xi of a mesh
H of Ω defines the discrete field Mi = M(xi). If N denotes the number of vertices of H, the
linear discrete metric field is denoted by (Mi)i=1...N . AsM(x) andMi are symmetric definite
positive, they can be diagonalized in an orthonormal frame, such that

M(x) = tR(x)Λ(x)R(x) andMi = tRiΛiRi,

where Λ(x) and Λi are diagonal matrices composed of strictly positive eigenvalues λ(x) and λi
and R and Ri orthonormal matrices verifying tRi = (Ri)−1. Setting hi = λ−2

i allows to define
the sizes prescribed by Mi along the principal directions given by Ri. Note that the set of
points verifying the implicit equation txMi x = 1 defines a unique ellipsoid. This ellipsoid is
called the unit ball ofMi and is used to represent geometricallyMi.
The two fundamental operations in a mesh generator are the computation of length and volume.
The length of an edge e = [xi,xj] and the volume of an element K are continuously evaluated
in (M(x))x∈Ω by:

`M(e) =

∫ 1

0

√
teM(xi + t e) e dt and |K|M =

∫
K

√
det(M(x)) dx

From a discrete point of view, the metric field needs to be interpolated [Frey 2008] to compute
approximate length and volume. For the volume, we consider a linear interpolation of (Mi)1...N

and the following edge length approximation is used:

|K|M ≈

√√√√det

(
1

4

4∑
i=1

Mi

)
|K| and `M(e) ≈

√
teMi e

r − 1

r ln(r)
, (1.1)

where |K| is the Euclidean volume of K and r stands for the ratio
√
teMi e/

√
teMj e. The

approximated length arises from considering a geometric approximation of the size variation
along end-points of e: ∀t ∈ [0, 1]h(t) = h1−t

i htj .
The task of the adaptive mesh generator is then to generate a unit-mesh with respect to
(M(x))x∈Ω. A mesh is said to be unit when it is only composed of unit-volume elements
and unit-length edges. Practically, these two requirements are combined into a quality func-
tion computed in the metric field. A mesh H is unit with respect to (M(x))x∈Ω when each
tetrahedron K ∈ H defined by its list of edges (ei)i=1...6 verifies:

∀i ∈ [1, 6], `M(ei) ∈
[

1√
2
,
√

2

]
and QM(K) ∈ [1, α] with α > 0 , (1.2)

with:

QM(K) =
3

1
3

36

∑6
i=1 `

2
M(ei)

|K|
2
3
M

∈ [1,∞]. (1.3)

Perfect elements are in the range [1−2]. This range arises from some discussions on the possible
tessellation of R3 with unit-elements [11]. Note the quality tends to ∞ when the volume tends

1.2. Metric-based mesh adaptation 11

to 0. The
√

2 and 1/
√

2 factors to control the length of edges are used to avoid to cycle during
the remeshing step. If a long edge is split, the two new edges should not be considered too small,
in order to avoid an infinite sequence of insertions and collapses.

There exists a large set of adaptive mesh generators that use a metric tensor as an input
to generate anisotropic meshes. Let us cite Bamg [Hecht 1998] and BL2D [Laug 2003] in 2D,
Yams [Frey 2001b] for discrete surface mesh adaptation and EPIC [Michal 2011], Feflo.a [54],
Forge3d [Coupez 2011], Refine [Jones 2006], Gamanic3d [George 2003b], MadLib [Compère 2010],
MeshAdap [Li 2005], Mmg3d [Dobrzynski 2008], Mom3d [Tam 2000], Tango [Bottasso 2004], Lib-
Adaptivity developed by [Pain 2001] and Pragmatic [Rokos 2015] in 3D.

1.2.2 Techniques for enhancing robustness and performance

The metric field provided has a direct, albeit complex, impact on the quality of the resulting
mesh. A smooth and well-graded metric field makes the generation of the anisotropic mesh
generation easier and generally improves the final quality. We consider two techniques that tend
to give a substantial positive impact on the quality of the resulting mesh: The anisotropic
mesh gradation tends to smooth the metric field, while the Log-Eucidean interpolation
allows to properly define metric tensors interpolation, thereby preserving the anisotropy even
after a numerous number of interpolations.

Anisotropic mesh gradation. The mesh gradation is a process that smoothes the initial
metric field that is generally noisy as it is derived from discrete data. Gradation strategies for
anisotropic meshes are available in [Li 2004, Alauzet 2010]. From a continuous point of view,
the mesh gradation process consists in verifying the uniform continuity of the metric field:

∀(x,y) ∈ Ω2 ‖M(y)−M(x)‖ ≤ C‖x− y‖2,

where C is a constant and ‖.‖ a matrix norm. This requirement is far more complex than
imposing only the continuity of (M(x))x∈Ω. From a practical point of view, this is done by
ensuring that for all couples (xi,Mi) defined on H verify:

∀(xi,yj) ∈ H2 G(‖xi − yj‖2)Mi ∩Mj =Mj and G(‖xi − yj‖2)Mj ∩Mi =Mi,

where G(.) is a matrix function defining a growth factor and ∩ is the classical metric intersec-
tion based on simultaneous reduction [Frey 2008]. This standard algorithm has O(N2) com-
plexity. Consequently, less CPU-intensive correction strategies need to be devised; we refer
to [Alauzet 2010] for some suggestions. Note that bounding the number of corrections to a fixed
value is usually sufficient to correct the metric field near strongly anisotropic areas as the shocks.
Two options are considered giving either an isotropic growth or an anisotropic growth:

G(dij)Mi =

 η1(dij)λ1

η2(dij)λ2

η3(dij)λ3

with

(i) ηk(dij) = (1 +
√
teijMi eij log(β))−2 or (a) ηk(dij) = (1 + λk dij log(β))−2, (1.4)

12 Chapter 1. An introduction to mesh adaptation for scientific computing

where dij = ‖xj −xi‖2, eij = xj −xi and β the gradation parameter > 1. The isotropic growth
is given by law (i) while the anisotropic by law (a). Note that (i) is identical for all directions,
contrary to anisotropic law (a) that depends on each eigenvalue along its principal direction.
In the sequel, we use the gradation to smooth the transition between the various metric fields:
surface and volume, surface and boundary layers.

Log-Euclidean framework and applications. After each point insertion or during the com-
putation of edge lengths, a metric field must be interpolated. Interpolation schemes based on the
simultaneous reduction [Frey 2008] lack several desirable theoretical properties. For instance,
the unicity is not guaranteed. A framework introduced in [Arsigny 2006] proposes to work in
the logarithm space as if one were in the Euclidean one. Consequently, a sequence of n metric
tensors can be interpolated in any order while providing a unique metric. Given a sequence of
points (xi)i=1...k and their respective metricsMi, then the interpolated metric in x verifying

x =
k∑
i=1

αi xi, with
k∑
i=1

αi = 1, isM(x) = exp

(
k∑
i=1

αi ln(Mi)

)
. (1.5)

On the space of metric tensors, logarithm and exponential operators are acting on metric’s
eigenvalues directly:

ln(Mi) = tRi ln(Λi)Ri and exp(Mi) = tRi exp(Λi)Ri.

Numerical experiments confirm that using this framework during interpolation allow to preserve
the anisotropy. Note that the evaluation of length given by (1.1) corresponds to the Log-
Eucldiean interpolation between the two metrics of the edge extremities.

1.2.3 Metric-based error estimates

From the previous concepts, metric-based error estimates are well suited for the generation of
anisotropic meshes. We focus on this set of estimates in the sequel. We then describe in more
details the case of the interpolation error as it is the easiest to implement.

1.2.4 Controlling the interpolation error

Controlling the linear interpolation error of a given flow field allows to derive a very simple
anisotropic metric-based estimate. Interpolation estimate is the first introduced in the pioneering
work [Castro-Díaz 1997] by equi-distributing the interpolation error in L∞ norm. Here, we
prefer to control the Lp norm of the interpolation error. Such control allows to recover the
order of convergence of the scheme for flows with shocks and to capture all the scales of the
numerical solution [62]. Given a numerical solution Wh (density, pressure, Mach number, . . .),
a solution of higher regularity Rh(Wh) is recovered, so that the following interpolation error
estimate [Chen 2007, 12] holds:

‖Rh(Wh)−ΠhRh(Wh)‖Lp ≤ N−
2
3

(∫
Ω

det
(
|HRh(Wh)|

) p
2p+3

) 2p+3
3p

(1.6)

1.2. Metric-based mesh adaptation 13

where HRh(Wh) is the Hessian of the recovered solution and N an estimate of the desired number
of nodes, and Πh the piecewise linear interpolate of a function. Using the continuous mesh
framework, the point-wise metric tensor minimizing (1.6) norm of the error is given by:

MLp(Wh) = det(|HR(Wh)|)
−1

2p+3 |HR(Wh)|, (1.7)

where |HR(Wh)| is deduced from HR(Wh) by taking the absolute value of the eigen-values
of HR(Wh). The optimal metric is obtained by solving a calculus of variation [11, 12], such
derivation is summarized in Chapter 4 for the case of high order interpolations.

In the sequel, the interpolation error is controlled in L2 norm exclusively, while the HR oper-
ator is based on the double L2 projection, see [Vallet 2007] for a review on numerical derivatives
recovery. For the numerical examples, we will use the complexity to control the level of accuracy.
The complexity is defined by C(M) =

∫
Ω

√
det(M). Imposing a complexity of N leads to the

following scaling of the metric:

MLp(Wh,N) =

 N∫
Ω det(|HR(Wh)|)

p+1
2p+3

 det(|HR(Wh)|)
−1

2p+3 |HR(Wh)|. (1.8)

For time dependent problems, we use an extension of the multi-scale approach [Alauzet 2011, 7].
The process may be summarized as follows. The whole time frame [0, tf] is split in nt sub-
intervals:

[0, tf] =

nt⋃
i=1

[ti, ti+1], with t1 = 0 and tnt = tf .

Then, the main idea consists in deriving nt meshes (Hi)i=1,nt that minimize the interpolation
error on the solution u defined on Ω:

Find (Hiopt)i=1,nt = min

nt∑
i=1

∫ ti+1

ti

∫
Ω
|W −ΠhW |p dΩ dt for all i ∈ [1, nt]. (1.9)

The solution of this problem gives a sequence of metric tensor fields (Mi)i=1,nt for each sub
interval [ti, ti+1]. The continuous problem is then solved using a calculus of variations. From
a practical point of view, on a time interval [ti, ti+1], the flow solver outputs a sequence of ns
solutions every ∆t = (ti+1 − ti)/ns. From this sequence, a maximal or mean Hessian H̃i is
recovered [Alauzet 2011] accounting for the error for the sub-window time frame. Then, once
all H̃i are recovered, a global normalization is applied for the whole time frame [0, tf] to derive
(Mi)i=1,nt, see Fig. 1.20.

A detailed review of metric-based estimates for steady and unsteady problems can be found
in [10].

1.2.5 Geometric estimate for surfaces

Controlling the deviation to a surface has been studied in previous works, see [Aubry 2011,
Frey 2000, Frey 2003] for anisotropic remeshing. We recall that the surface remeshing is done
by considering only discrete data, either inherited by the CAD or recovered directly from the

14 Chapter 1. An introduction to mesh adaptation for scientific computing

discrete mesh. Prior to surface remeshing, normals and tangents are then assigned to each
boundary point. We denote by ni the normal of the vertex xi. As in [Frey 2000], a quadratic
surface model is computed locally around a surface point xi. Starting from the topological
neighbors of xi, the coordinates of each point are mapped onto the local orthonormal Frenet
frame (ui,vi,ni) centered in xi. Vectors (ui,vi) lie in the orthogonal plane to ni. We denote
by (uj , vj , σj) = (txj .ui,

txj .vi,
txj .ni) the new coordinates of vertex xj . xi is set as the new

origin so that (ui, vi, σi) = (0, 0, 0). The surface model consists in computing by a least squares
approximation a quadratic surface:

σ(u, v) = au2 + bv2 + cuv, where (a, b, c) ∈ R3. (1.10)

The least squares problem gives the solution to min(a,b,c)

∑
j |σj − σ(uj , vj)|2, where j is the set

of neighbors of xi. Note that at least 3 neighbors points are necessary to recover the surface
model. Finally, if the degree of xi is d, the linear system is:

AX = B ⇐⇒

u2

1 v2
1 u1v1

...
...

...

u2
d v2

d udvd

 a

b

c

 =

σ1
...

σd

 .

The least square formulation consists in solving tAAX = tAB. From this point, one may
apply the surface metric given in [Frey 2000]. We propose here a simplified version. We can
first remark that the orthogonal distance from the plane n⊥i onto the surface is given by σ(u, v)

by definition. The trace of σ(u, v) on n⊥i is a function that gives directly the distance to the
surface. The 2D surface metricM2D

S such that the length `M2D
S

((u, v)) is constant and equal to ε
is easy to find starting from the diagonalization of the quadratic function (1.10). Geometrically,
it consists in finding the maximal area metric included in the level-set ε of the distance map.
We assume thatM2D

S admits the following decomposition:

M2D
S = (ūS , v̄S)

(
λ1,S 0

0 λ2,S

)
t(ūS , v̄S), with (ūS , v̄S) ∈ R2×2.

If we want to achieve the same error as the initial mesh, we compute ε = minj |σ(uj , vj)| among
the neighbors of xi. The anisotropic 2D metric achieving an ε error becomes:

M2D
S (ε) =

1

ε
M2D

S .

The final 3D surface metric in xi is:

MS(ε) = (uS ,vS ,ni)

λ1,S

ε
0

0
λ2,S

ε
0

0 0 h−2
max

 t(uS ,vS ,ni), (1.11)

with

 uS = ūS(1)ui + ūS(2)vi,

vS = v̄S(1)ui + v̄S(2)vi.

1.2. Metric-based mesh adaptation 15

The parameter hmax is initially chosen very large (e.g. 1/10 of the domain size). This normal
size is corrected during various steps. A first anisotropic gradation using (1.4)(i) is applied
on surface edges only. The surface metric is then intersected with any computation metrics as
given by (1.7). These two steps set automatically a proper element size in the normal direction.
Note that different local surface estimates can be derived depending on the local information
available, see [Vlachos 2001b].

During the mesh adaptation process, the previous procedure is not applied independently
on each current mesh to be adapted. On the contrary, the surface metric is computed once on a
fixed background mesh. This metric is then interpolated on each adapted mesh in the course of
the iterative process. This tends to maintain a consistent gap with respect to the true geometry.

1.2.6 Boundary layers metric

Boundary layers mesh generation has been devised to capture accurately the speed profile around
a body during a viscous simulation. The width of the boundary layer depends on the local
Reynolds number [Löhner 2001]. So far, the generation of the boundary layer grids has been
carried out by an extrusion of the initial surface along the normals to the surface or by local mod-
ification of the mesh [Marcum 1996]. Note that using the normals as sole information requires
several enrichments to obtain a smooth layers transition on complex surfaces [Aubry 2009]. In
this chapter, we consider a simple approach that is naturally compatible with anisotropic adap-
tation procedures. The idea consists in representing the boundary layer mesh by a continuous
metric field.

The distance to the body is computed using classical algorithms of level-set methods, see
[Löhner 2001]. This step can be done quickly and has generally a complexity of O(N ln(N))

where N is the number of points in the current mesh. (Furthermore, note that from a practical
point of view, this function is evaluated only in the vicinity of the body). To control the size in
the tangential directions, a metric is recovered from the current surface mesh or a background
mesh. It takes advantage of the Log-Euclidean framework. Starting from elements (K)P∈K of
vertex P , the ball of vertex P , the unique surface metric tensor MK (for which K is unit) is
computed by solving the following 6× 6 linear system:

(S)

`2MK

(e1) = 1

. . .

`2MK
(e6) = 1 .

(1.12)

where (ei)i=1,6 are elements edges. (S) has a unique solution as long as the volume of K is not
null. The logarithm of each metric is computed so that a classical Euclidean mean weighted
by the area of elements is done. Finally, the body point metricMP is mapped back using the
exponential operator:

MP = exp

(∑
P∈K |K| ln(MK)∑

P∈K |K|

)
.

The final boundary layers metric is based for a continuous exponential law of the form h0 exp(αφ(.)),
where h0 is the initial boundary layer size and α the growing factor. For a volume point xi,
the boundary layers metric depends on the body point Pi for which the minimum distance is
reached. The following operations conclude this step:

16 Chapter 1. An introduction to mesh adaptation for scientific computing

1. Compute the local Frenet frame (ui,vi,∇Φ(xi)) associated with ∇Φ(xi)

2. Set the size in the normal direction to hni = h0 exp(αΦ(xi)), the sizes in the orthogonal
plane to:

hui =
(
tuiMPi ui

)−2 and hvi =
(
tviMPi vi

)−2
,

3. The final metric is given by:

Mbl(xi) = t(ui,vi,∇Φ(xi))

 h−2
ui

h−2
vi

h−2
ni

 (ui,vi,∇Φ(xi)). (1.13)

The key idea is again to simplify the coupling by using only metric tensor fields. Indeed,
taking altogether the viscous and un-viscous contributions simply consists in intersecting the
corresponding metric tensor fields.

1.3 Algorithms for generating anisotropic meshes

This section describes the local operators used to adapt the mesh once one or several tensor
fields are provided on input. We then describe additional operators used to optimize the mesh
and to guarantee an optimal time step for unsteady simulations.

1.3.1 Insertion and collapse

To generate a unit-mesh in a given metric field (Mi)i=1...N , two operations are recursively used:
edge collapse and point insertion on edge.
The starting point for the insertion of a new point on an edge e is the shell of e composed of all
elements sharing this edge. Each element of the shell is then divided into two new elements. The
new point is accepted if each new tetrahedron has a positive volume. When a point is inserted
on a boundary edge, either a linear approximation of the surface is used or a query to the CAD.
The newly inserted point is created at the mid-edge point in the metric. To compute it, we first
evaluate the size of the current edge with respect to the two end-points (A,MA) and (B,MB):

`MA
=
√
tABMAAB and `MB

=
√
tABMB AB.

If `MA
equals `MB

, the mid-edge point in the metric is the geometric mid-point 1
2(A + B).

When they differ, we need to solve the nonlinear problem in t ∈ [0, 1] arising for the length
approximation of (1.1):

Find t such that
1

2
= `MA

rt − 1

log(r)
with r =

`MB

`MA

. (1.14)

We use a dichotomy approach to solve (1.14), the mid-point is then (1− t)A+ tB.
The edge collapse starts from the ball of the vertex to be deleted. Again, for the deletion of
points inside the volume, the only possible rejection is the creation of a negative volume element.
A special care is also required to avoid the creation of an element that already exists, see Fig. 1.8

1.3. Algorithms for generating anisotropic meshes 17

A
B

Volume case Surface case

A

B

Merging A onto B

Figure 1.8 – Left and middle, volume and surface collapse of edge AB leading to the creation
of an element that already exists . Right, example where an edge is recursively refined to get
a unit-length without checking the length requirement in the edge’s orthogonal direction; the
configuration may lead to edges acting as a barrier for future refinement.

(left and middle). The rejections are more complicated in the case of a surface point. We first
avoid each collapse susceptible to modify the topology of the object. This is simply done by
assigning an order on each surface point types: corner, ridge (line), inside surface. The collapse
can also be rejected if the normal deviation between old and new normals becomes too large.
Currently, if n denotes the normals to an old face, we allow the collapse if each new normal ni
verifies tnni > cos(π/4). Note that the control to the surface deviation is given by the surface
metric and so it does not need to be handled directly in the collapse operation.
With these operations, the core of the adaptive algorithm consists in scanning each edge of
the current mesh and, depending on its length, creating a new point on the edge or collapsing
the edge. An edge is declared too small or too large according to the bounds given in (1.2).
Without any more considerations, such adaptive mesh generator is known not to be efficient
and to require a lot of CPU consuming optimizations as point smoothing and edge swapping.
This inefficiency is simply due to the locality of these operations. Compared to an anisotropic
Delaunay kernel [Dobrzynski 2008], when an edge needs to be refined, the metric lengths along
the orthogonal directions are controlled by the creation of the cavity. Consequently, in one shot,
the area of refinement must be large. With the present approach, the size is controlled along
one direction only (along the edge being scanned). Consequently, one can reach intractable
configurations where the same initial edge is refined successively to get the desired size whereas
the sizes in the other directions get worse. A typical configuration is depicted in Fig. 1.8 (right).

A simple way to overcome this major drawback is to use the quality function (1.3) together
with the unit-length check. This supplementary check can be done at no cost since a lot of
information can be reused: the volume is already computed, as well as the length of the edges.
By simply computing the quality function, we give to these operators the missing information on
the orthogonal directions of the current scanned edge. For the collapse, to decide which vertex
is deleted from the edge, the qualities of the two configurations are compared and the best one is
kept. For an optimal performance, two parameters are added in the rejection cases of insertion
and collapse: a relative quality tolerance qr ≥ 1 and a global quality tolerance qa. Indeed, it
seems particularly interesting not to try to implement a full descent direction by imposing the
quality to increase on each operation. We prefer to allow the quality to decrease in order to get
out of possible local minima. Consequently, a new configuration of elements is accepted if:

qrQ
ini
M ≤ QnewM and QnewM < qa,

18 Chapter 1. An introduction to mesh adaptation for scientific computing

where QiniM is the worse element quality of the initial configuration and QnewM is the worse quality
of the new configuration. This approach is similar to the simulated annealing global optimization
technique [Kirkpatrick 1983]. Note that the current version does not fully implement the classical
metropolis algorithm where the rejection is based on a random probability. To ensure the
convergence of the algorithm, the relative tolerance qr is decreased down to 1 after each pass of
insertions and collapses. At the end of the process, the absolute tolerance qa is set up to the
current worse quality among all elements.

1.3.2 Optimizations and enhancements for unsteady simulations

In addition to the quality-driven insertion and collapse, we use standard anisotropic mesh opti-
mization techniques such as edges and faces swaps and point smoothing in order to increase the
level of anisotropy and the quality of the mesh. By improving the overall quality, they usually
improve the stability of the flow solver as well. For unsteady simulations, we add an additional
control parameter in order to ensure that an optimal time step is guaranteed.

Swaps of edges and faces are standard mesh modifications operators, see [Freitag 1997,
Frey 2008]. In the context of anisotropic remeshing, theses operators are simply monitored
by anisotropic quality (1.3). Once the topological and geometrical validity of a swap is verified
(positive volume and valid new configurations), it is actually performed only if the quality of
the new configuration is strictly lower that the initial quality. We use an improvement factor
qr = 0.95 for all the numerical examples.

The point smoothing is also a popular simple operator [Frey 2008]. It consists in computing
a new optimal position of a vertex to improve the quality of the surrounding elements. The main
difficulty is the computation of the optimal position. In our case, we also want to optimize the
length distribution. Consequently, for an edge PPi with metricM(P) andM(Pi), the optimal
point position of P is approximated in a Riemannian way by computing :

θ = 1− log

(
`M(P)

`M(P)− log(r)

)
1

log(r)
with

`M(P) =

√
PPiM(P)PPi,

`M(Pi) =
√
PPiM(Pi)PPi,

r = `M(P)/`M(Pi).

The formula arises from seeking the optimal size to get a unit-edge length along PPi:∫ θ

0
`M(P)t−1`M(Pi)

−tdt = 1.

Then the optimal position for P from Pi is :

Popti = P + θ PiP.

This procedure is repeated with all the neighboring vertices of P :

Popt = αP +
1− α
nP

(
nP∑
i=1

Popti

)
with α ∈ [0, 1].

If Popt generates positive volume elements and improves the final quality, P is moved to this new
position. Starting with α = 0.2, a greater value of α is considered in case of rejection. Note that

1.4. Adaptive algorithm and numerical illustrations 19

the metric of P is interpolated at the new position to evaluate the new quality. When a surface
point is moved, it is also projected back to the surface and the surface deviation is checked in a
similar way as for the insertion and collapse operators.

For unsteady simulations, the mesh adaptation becomes critical as the CPU time of the
simulation depends on the quality of the worse element. Indeed, when an explicit time stepping
is used, the minimal time step governs the speed of the simulation. Consequently, the minimal
size (or height) generated during the remeshing process may impact drastically the CPU time.
If the generated size if 0.01 of the minimal target, then the whole CPU time will be multiplied
by 100. To overcome this issue, we add an additional control to the quality based on the height
of the tetrahedra. We start from the definition of the minimal height of a tetrahedron:

h2 =
1

3

V

Smax
, (1.15)

where h is the minimal height, V the volume and Smax the maximal area of the faces. For each
provided metric, we consider then the regular tetrahedron of side h1, h2, h3, where (hi)i are the
unit lengths along the eigenvectors of the metric. Then, assuming that the sizes may be in the
range [1√

2
hi,
√

2hi], see (1.2), we can estimate the global minimal height htar using

htar = max(λ1, λ2, λ3)−2

√
3

6
, (1.16)

where (λi)i=1,3 are the eigenvalues of M(P) and
√

3
6 the height of the regular tetrahedron. A

mesh modification is then rejected if the minimal height of the new set of tetrahedra is lower
than htar and the minimal height of the initial set of elements. Numerical experiments have
proved that this additional constraint does not have a negative impact on the level of anisotropy
while preserving an optimal CPU time step.

1.4 Adaptive algorithm and numerical illustrations

The previous mesh adaptation strategy is used inside an adaptive loop that couples the error
estimations, the mesh adaptation and the flow solver. In this section, we give some additional
details on the components that are not relative to the local remeshing. We then first validate the
full adaptive approach on a supersonic wing-body configuration where the adapted numerical
solution is compared with experiments. Then, we consider the direct sonic boom prediction of a
complex aircraft. The adaptive strategy is then applied to the prediction of boundary layer/shock
interaction. Finally, we consider unsteady simulations with the double Mach reflection and a
blast prediction.

1.4.1 Adaptive loop

The complete adaptive algorithm for steady simulations is composed of the following steps.

1. Compute the flow field (i.e. converge the flow solution on the current mesh);

2. Compute the metric estimates: surface, volume, boundary layers, etc.

20 Chapter 1. An introduction to mesh adaptation for scientific computing

3. Generate a unit mesh with respect to these metric fields;

4. Re-project the surface mesh onto the geometry using the CAD data or a fixed background
mesh;

5. Interpolate the flow solution on the new adapted mesh;

6. Goto 1.

For Step 1, two flow solvers have been used in the numerical section. The first flow solver,
FEFLO [Löhner 2001], works on unstructured grids with finite element discretization of space and
edge-based data structures. The Galerkin edge-fluxes are replaced by numerically consistent
fluxes, typically given by approximate Riemann solvers (van Leer, Roe, HLLC, ...) with limited
variables (van Leer, van Albada, ...). The second flow solver is WOLF [Alauzet 2010] and it
uses a mixed Finite Element/Finite Volume discretization with a MUSCL extrapolation. Both
codes have been verified to be second order accurate on smooth flows and second order accurate
for flows with shocks by using adaptivity [62, 54]. The flow solvers use an implicit LU-SGS
scheme [Luo 1998, 44]. FEFLO is used for simulations 4.4 and 4.5, WOLF for simulations 4.2, 4.3
and 4.6. For the unsteady simulations, an explicit time stepping based on Runge-Kutta schemes
is used and the explicit control of the height of the tetrahedra of Section 3.2 is activated.

For Step 4., if the surface approximation ε is small enough with respect to the minimal metric
size controlling the interpolation error, the simple smoothing procedure usually succeeds to
directly move the point onto the geometry. For more complex cases, with boundary layer or when
the surface approximation is low, most advanced operators like the cavity-based operators [48]
are needed.

For all the simulations, we use a 8-processors 64-bits MacPro with an IntelCore2 chipsets
with a clockspeed of 2.8GHz with 32Gb of RAM. The flow solver is multi-threaded while the
local remeshing is serial. The final metric field (multi-scale, surface, boundary-layer) is always
smoothed by using isotropic gradation law (1.4)(i), with a parameter of 1.2.

To evaluate the level of anisotropy, we use the anisotropic ratio and anisotropic quotients
of an element. Both measures are uniquely defined by computing the metric solution of (1.12),

and then by evaluating the following quantities from its eigenvalues with hi = λ
− 1

2
i :

r =
maxi=1,3 hi
mini=1,3 hi

and qi =
h3
i

h1 h2 h3

Anisotropic quotients measure the gain with respect to an isotropic mesh adaptation, in partic-
ular, they increase when two anisotropic directions exist.

For all cases, the initial meshes are generated by using either a constrained Delaunay ap-
proach for simulations 4.2 and 4.3 and a frontal approach for simulations 4.4, 4.5 and 4.6. Note
that only the material described in the previous sections are used. The interpolation error in
L2 norm is used in addition to the surface metric, metric smoothing and boundary layer metric
described in Section 2. The algorithm used to generate the meshes exactly fits the procedures
given in Section 3.

1.4. Adaptive algorithm and numerical illustrations 21

7.01

8.21

16.29
17.52

3.45

1.2369º
80º

x
r

0.54

c
c/2

t t/2

t/c=0.05

Figure 1.9 – Wing-body example: Left, planform of the wing-body model. Right, CAD of the
model equipped with a parabolic sting to emulate experiment apparatus.

0 0.5 1 1.5
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

ite.15: 183K
ite.10: 194K
ite.5: 106K
XP

Figure 1.10 – Wing-body example: Left, normalized pressure signature p−p∞
p∞

at R/L = 3.6 for
the final meshes for each fixed complexity. Right, closer view of the final anisotropic adaptive
mesh near the observation line.

1.4.2 A wing-body configuration

The first example is a supersonic flows around the 4th wing-body configuration described in the
report [Hunton 1973]. The planform of the model and the corresponding CAD are depicted in
Fig. 1.9. The inflow is at Mach 1.68 with a lift of 0.15. We observe the pressure below the
aircraft at a distance R = 3.1L where L is the reference length of the aircraft (here 17.52 cm).
Experimental data are available at this distance, see [Hunton 1973]. The adaptive process is
based on metric (1.7) coupled with the surface metric (1.11) with ε = 0.001. The simulation is
composed of 3 steps at the following complexity : 25 000, 50 000 and 75 000 with 5 sub-iterations
at a fixed complexity yielding to a total of 15 iterations. We control the interpolation error of
the Mach number in L2 norm. The final mesh is here composed of 283 625 vertices and 1 582 309

tetrahedra. The worst volume quality is 20 and the worst surface quality is 9.9 The average
anisotropic ratio is 61 and the mean anisotropic quotient is 2711. 92 % and 99.9 % of the volume
and surface edges respectively are unit. The total CPU time for this run is 61 mn. This case
features 3 strong shocks that are well and early captured by the adaptive process, see Fig. 1.10
for comparisons with experiments.

22 Chapter 1. An introduction to mesh adaptation for scientific computing

10km

15km

Figure 1.11 – SSBJ example: Left, initial surface mesh of the SSBJ geometry, right, computa-
tional domain with the position of the aircraft in the domain.

1.4.3 Direct sonic boom simulation

We consider in this example the accurate prediction of the pressure signal below the SSBJ design
provided by Dassault-Aviation. The length of the aircraft is L = 43 m while the distance of
observation from the aircraft is denoted by R. The initial surface mesh is depicted in Fig. 1.11.
The aircraft is put in a 10 km domain as depicted in Fig. 1.11 (right). The initial mesh was
generated automatically by using an advancing-front technique [Löhner 1988b]. The size ratio
in the initial mesh is hmin/hmax = 1e−9 and the volume of the elements ranges from 5.4e−11 to
4.7e10. The flow condition is Mach number 1.6 with an angle of attack of 3 degrees. Our intent
is to observe the pressure field for various R up to 9 km. This corresponds to a ratio R/L of
about 243. According to the flow conditions, for R = 9 km, the length of the propagation of the
shock waves emitted by the SSBJ is actually around 15 km.

The interpolation error on the Mach number in L2 norm is controlled and the surface is con-
trolled with (1.11) and ε = 0.001. The strategy employed here is based on 30 adaptations at the
following complexities: 80 000, 160 000, 240 000, 400 000, 600 000 and 800 000. Each step is com-
posed of 5 sub-iterations at a fixed complexity. The final mesh is composed of 3 299 367 vertices
and 19 264 402 tetrahedra only. The average anisotropic ratio is 1907 while the mean anisotropic
quotient is 50 3334. All the scales involved in this simulation are depicted in Fig. 1.16. This ex-
ample shows that a very high level of anisotropy is reached using unstructured mesh adaptation.
Indeed, it is at least one order of magnitude higher than in the previous examples. Local refine-
ment allows to keep a maximum accuracy and enables to generate quality anisotropic meshes.
We mention that for each generated mesh, the worst element quality computed with (1.3) is
always below 50 for the volume and below 20 for the surface while the percentage of unit ele-
ments is always greater than 90 %. In addition, the flow solver still converges on such meshes
leading to accurate pressure signatures for R/L ≈ 250. Anisotropic ratios and quotients for the
whole sequence of meshes are reported in Table 1.1. They are increasing along the iterations.
This shows that the accuracy across the shocks is increasing while the sizes in the anisotropic
directions are decreasing at a lower rate. The fact that the anisotropic quotient is increasing
simply shows that there exist two anisotropic directions. Note that using (1.7) avoid to prescribe
a minimal size during the adaptation leading to even stronger anisotropy. This property is due

1.4. Adaptive algorithm and numerical illustrations 23

Table 1.1 – SSBJ example: Properties of each final adapted mesh : mean anisotropic ratio,
mean anisotropic quotient, number of vertices and number of tetrahedra for each complexity.
The last column gives the cumulative CPU time.

Iteration Complexity Ratio Quotient # Vertices # Tet. CPU time

5 80 000 200 10 964 432 454 2 254 826 1 h 10 mn

10 160 000 383 30 295 608 369 3 294 197 2 h 54 mn

15 240 000 698 81 129 1 104 910 6 243 462 6 h 9 mn

20 400 000 1 089 177 295 1 757 865 10 125 724 11 h 15 mn

25 600 000 1 575 340 938 2 572 814 14 967 820 18 h 47 mn

30 800 000 1 907 503 334 3 299 367 19 264 402 28 h 35 mn

Figure 1.12 – SSBJ example: Left, cut in the final adapted mesh 10 m below the aircraft.
Right, cut 10 m behind the aircraft showing how anisotropic tetrahedra are aligned with the
Mach cones.

to the sensitivity property of (1.7) given by the local normalization term det(|HR(uh)|)
−1

2p+3 . An
example of the scales of the solution is given by the pressure extractions in Fig. 1.14 at R = 5 km
and R = 9 km. Indeed, the normalized pressure signal at R = 9 km is of order 8e−4 while the
magnitude is around 3e−2 at R = 43 m. Consequently, we can expect for the volume interpola-
tion error to have a magnitude ratio of (102)3. It is then necessary to guarantee that the error
estimate detects such small amplitudes even in the presence of large amplitudes. This example
demonstrates that using (1.7) complies with this requirement allowing to detect automatically
all the scales of the solution, see Fig. 1.14. Several cuts in the symmetry plane are depicted in
Fig. 1.13. At R = 5 km, we still distinguish 3 separated shocks waves and at R = 9 km only
two shock waves are separated leading the classical N-wave signature. These features are even
more emphasized on the pressure signatures in Fig. 1.14.

The total CPU time is around 28 h 35 mn. 75 % of the CPU time is spent in the flow solver
and 35 % in the remeshing, interpolation and error estimate. Note that accurate signatures
at R = 5 km are already obtained after 11 h of CPU (corresponding to the 20th iteration) as
depicted in Fig. 1.14. We give in Table 1.1 the full sequence of CPU times. The first three steps
provide an accurate signal for R/L < 20 and below.

1.4.4 Boundary layer shock interaction

We apply this strategy to study shock/boundary layer interaction. The test case is depicted
in Fig. 1.17. The shock waves are generated by a double wedge wing at Mach 1.4 with an

24 Chapter 1. An introduction to mesh adaptation for scientific computing

R = 5 km

R = 9 km

Figure 1.13 – SSBJ example: From top to bottom, from left to rigth, cut in the final anisotropic
mesh close to the aircraft, closer view of the mesh 5 km below the aircraft, closer view at 9 km
below the aircraft, global view of the mesh.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
−8

−6

−4

−2

0

2

4

6

8

10

x

(p
−p

!
)/p

!
 x

 1
0−

4

ite.20: 1M7
ite.25: 2M5
ite.30: 3M3

0 1000 2000 3000 4000 5000 6000
−1.5

−1

−0.5

0

0.5

1

1.5

x

(p
−p

!
)/p

!
 x

 1
0−

3

ite.20: 1M7
ite.25: 2M5
ite.30: 3M3

R = 9 km R = 5 km

Figure 1.14 – SSBJ example: Left, pressure signature at R = 9 km for the final meshes corre-
sponding the last three complexities. Right, pressure signature at R = 5 km. The legend reports
the number of vertices of each mesh in million (Iteration 20, 25 and 30). The pressure curves
are deliberately shifted for visibility.

1.4. Adaptive algorithm and numerical illustrations 25

Figure 1.15 – SSBJ example: Left, adapted surface mesh, the red square shows the position of
the SSBJ. Right, Mach number iso-lines on the symmetry plane y = 0.

Zoom × 10

Zoom × 100

Zoom × 100

300 m
10 cm

1 cm

Zoom × 100

40 m

5 km

9 km10
k
m

15 km

Anisotropic tetrahedron

Figure 1.16 – SSBJ example: Example of the scales of anisotropic elements reached in this
simulation. An typical anisotropic element in the path of the shock has sizes of the order of
300 m , 10 cm and 1 cm

26 Chapter 1. An introduction to mesh adaptation for scientific computing

Figure 1.17 – Shock/boundary layer interaction example: from left to right, computational
domain and initial surface mesh

angle of attack of 0 degree and a Reynolds number of 3.4 106. Only the plate is treated as
a viscous body. We solve the set of the Reynolds-average Navier-Stokes equations with the
Baldwin Lomax turbulence model. The final adapted mesh and the Mach number iso-values
are depicted in Fig. 1.17, closer views around the two shocks are depicted in Fig. 1.18. The
final mesh is composed of 280 000 vertices and 1.3 million tetrahedra and is obtained after 20
iterations with a complexity of 10 000. In this example, we control the interpolation error on
the Mach number coupled with boundary layer metric (1.13). The initial mesh is used as the
background mesh to compute (1.13) with parameters h0 = 10−6 and α = 1.2. As the boundary-
layer metric is intersected with the interpolation error based metric, the resulting complexity is
naturally greater. The unstructured boundary layer mesh height is around 10−7 near the plate.
The average anisotropic ratio is greater than 106 and the average ratio is around 500. The worst
surface element quality is 33 and 500 for the volume. For the final mesh, the minimal size in
the unstructured layer is of the order of 10−7. As shown in Fig. 1.18 (bottom), we successfully
capture the typical bubbles and re-circulations at the intersection between the shocks and the
boundary layer.

This simulation leads to the following observations. Generating a semi-structured boundary
layer mesh extruded from the surface mesh gives only the require accuracy for the smaller
layers. Indeed, the distance of the bottom of the shock from the viscous plate is around 10−3

whereas the initial height of the uniform boundary layer mesh was at 0.2. Consequently, the
example emphasizes the difficulty of capturing these phenomena only with an a priori fixed
quasi-structured boundary layer mesh. In addition, this approach is completely generic and
robust and can handle complex geometries. However, if the shock/boundary layer interaction
is automatically handled, the impact of having a fully unstructured mesh is not yet analyzed
in terms of solution accuracy and solver stability in the viscous area. Consequently, it also
seems interesting to derive a method to generate structured mesh for the smaller layers (at
least) while preserving (upper) anisotropic refinements. Metric-orthogonal and metric-aligned
anisotropic mesh adaptations are possible solutions to generate highly anisotropic meshes with
quasi-structured elements [45, 43].

1.4. Adaptive algorithm and numerical illustrations 27

Figure 1.18 – Shock/boundary layer interaction example: from left to right, Mach umber iso
values and final adapted surface mesh.

Figure 1.19 – Shock/boundary layer interaction example: Stream lines of the velocity in two
bubbles creating from the interaction shock and boundary layer.

28 Chapter 1. An introduction to mesh adaptation for scientific computing

t

Tini

metric sampling

∆T

∆t

Tend

Fixed-point loop

Figure 1.20 – Unsteady adaptation algorithm: a fixed mesh is generated for sub-time window
by sampling the solution at different time steps.

1.4.5 Double Mach reflection and blast prediction

The first unsteady case is double Mach reflection. This simulation starts from a 2-state initial-
ization of a shock wave impacting a ramp. The density, speed and pressure for the right side
are (5.71, 9.76, 0, 0, 116.5) and (1, 0, 0, 0, 1) for the left side, the shock wave propagates along the
x-direction. The total physical time of the simulation is 0.18s. For this simulation, the time
frame [0, 0.18] is divided in 30 sub-time windows with 5 fixed point iterations and 21 metric
intersections for each sub-time window. We control the L2 norm of the density interpolation
error. The simulation CPU time is 8h55m, 80% is spent in the flow solver and 20% in the
mesh adaptation. The final mesh is composed of 235 095 vertices, 1 310 082 tetrahedra and 5 864

boundary faces. The mesh at final time and density iso-values are depicted in Fig. 1.21. We
can see that the contact discontinuity is impacting the ramp and that the generated vortices are
pushing forward the initial front shock. If this phenomenon is usually observed in 2D simula-
tion [Woodward 1984], its observation on 3D geometry is more complex. Moreover, the thickness
of the adaptation is due to the fixed point strategy as the mesh is adapted for all the times step
belonging to a sub-time frame.

We then consider a blast propagation on a more complex geometry: the US Capitol. Applying
successfully an anisotropic adaptive simulation on it is challenging as it features many complex
details as many columns, cupola, A classic load is considered, see Fig. 1.22. The final
physical time is 0.1 s. The whole time frame has been divided into 20 time slots of 0.005 s. The
flow solver outputs density field every 0.0005 s. The final anisotropic mesh for the time frame
[0.05, 0.055] is depicted in Fig. 1.22. The interpolation error on the density is controlled in L2

norm in space and time. The mesh is composed of almost 200 000 vertices for a total CPU time
of 8 hours.

1.5 Conclusion

The standard computational pipeline has been described for complex geometries and unstruc-
tured mesh generation from CAD to surface and volume mesh generation. For adaptivity, we
have described the basic principles of anisotropic mesh adaptation based on metric tensor fields:
concept of unit mesh, metric interpolation, metric smoothing, . . . A simple to implement but

1.5. Conclusion 29

3D Double Mach Reflection

Mesh size: 235 095 vertices, 1 310 082 tetrahedra and 57 864
boundary faces

87 Anisotropic Mesh Adaptation for CFD

3D Double Mach Reflection

Mesh size: 235 095 vertices, 1 310 082 tetrahedra and 57 864
boundary faces

87 Anisotropic Mesh Adaptation for CFD

3D Double Mach Reflection

Mesh size: 235 095 vertices, 1 310 082 tetrahedra and 57 864
boundary faces

87 Anisotropic Mesh Adaptation for CFD

3D Double Mach Reflection

Mesh size: 235 095 vertices, 1 310 082 tetrahedra and 57 864
boundary faces

87 Anisotropic Mesh Adaptation for CFDFigure 1.21 – Double Mach reflection at final time : final adapted surface mesh (top left),
density iso-values (top right), cut in the volume mesh (bottom left) and closer view near the
contact discontinuity and vortex shock interaction (bottom right).

30 Chapter 1. An introduction to mesh adaptation for scientific computing

Figure 1.22 – Top, the US capitol CAD (left) and initial surface mesh (right) with the initial
blast location. Bottom, anisotropic surface mesh at t = 0.025s (left) and the density solution
iso-values (right).

robust local remeshing strategy has been detailed. It allows to adapt different components of
the flows. For each adaptation, we use a dedicated metric field issued from various estimates:
surface curvatures, interpolation errors, distance to a body, . . . Numerical examples show the
robustness of the method to (i) reduce solver diffusion and (ii) reach a high level of anisotropy
that is hardly tractable with a structured approach or a global remeshing method.

This chapter has covered only the basic processes that are required to reach a high level of
anisotropy and recover a second order accuracy in space when simulating flows with shocks. It
is important to mention that each component is crucial to gain all the benefit of adaptivity. Any
improvement in one component may improve the whole process. We refer to [38] for a detailed
discussion on the current issues of unstructured mesh adaptation. Mesh generation and adap-
tation are still active fields of research and many topics are not discussed in this chapter. This
concerns the generation of boundary layer grids [Aubry 2009, Bottasso 2002, Garimella 2000],
the design of metric-aligned or metric-orthogonal grids [45, 43], the design of very high-order er-
ror estimates [Yano 2012], the generation of high-order curved meshes [Abgrall 2014, Sahni 2010,
Toulorge 2013, Xie 2013] and parallel (adaptive) mesh generation [Alleaume 2008, Coupez 2000,
9, Ovcharenko 2013, Remacle 2015].

Chapter 2

Unique cavity-based anisotropic
framework

When dealing with inviscid flows, anisotropic mesh adaptation is commonly used to automati-
cally get a high solution accuracy with a much lower computational effort than standard meth-
ods (uniform meshes, tailored meshes, h-refinement, . . .). This gain increases with the level of
anisotropy of the flow at hand. However, when viscous flows are involved, several issues reduce
the efficiency and the use of unstructured mesh adaptation. The first limitation concerns the
adaptation of the surface mesh due to the presence of the boundary layer mesh. Projection to
the true geometry may be either unfeasible or inefficient. Then, the creation of the boundary
layer mesh itself becomes an even more complex issue when an anisotropic surface is provided.
Finally, the transition between the boundary layer and the adaptive mesh becomes of main
concern, especially at transonic speeds where strong interactions between shocks and boundary
layers exist. Consequently, the baseline adaptive algorithm described in Chapter 1 has several
drawbacks when fully detailed geometries and complex viscous flows are considered. As an
example, the edge collapse (used to remove a small edge) operator becomes one of the most
expensive operators as it is rejected in more than 80% of case in the context anisotropy. It
is then mandatory to offer more "global" operators that handles strong anisotropic elements.
This is the scope of the unique cavity-based operator that is used at each adaptive step: from
surface remeshing to boundary layer extrusion and volume mesh adaptation. For each case,
the operator is based on a variety of choices for the initial cavity in order to insert or reinsert
a surface or a volume point in an unstructured or quasi-structured fashion. To illustrate the
benefits of a unique cavity-based framework, more complex examples are presented involving
complex geometries with RANS simulations. The required level of anisotropy is at least two
levels of magnitude higher than the examples of Chapter 1. The genesis of the cavity-based
framework is inherent to the intrinsic limitations of the state-of-the-art meshing strategies used
so far for RANS simulations. We quickly review them in the introduction.

The work on the cavity-based operators and boundary layer mesh generation was initiated
in [49, 50, 52] and is part of collaboration with Mississippi State University [36]. It has been
then pursued during V. Menier’s Phd leading to the publications [44, 47, 48]. Computations for
RANS solutions, including periodic boundary conditions has been developed during L. Frazza’s
Phd with associated publications [3, 5, 28]. The computation for the contrail formation is part
of collaboration with ONERA [27, 34]. The validation of this work is part of a long-lasting
collaboration within the Unstructured Grid Adaptation Working Group with NASA and The
Boeing Company [30, 35, 38, 40].

32 Chapter 2. Unique cavity-based anisotropic framework

2.1 An introduction to standard boundary layer meshing tech-
niques and adaptivity

Despite the increasing computing power and new developments with Large Eddy Simulations
(LES) simulations [Sagaut 2001], there is still a need for "cheaper" Reynolds-Average Navier-
Stokes (RANS) simulations. The complexity of such flows are depicted in Fig. 2.1, showing
interaction between anisotropic components (shocks wave) and viscous boundary layers. Nu-
merical computations with viscous flows are usually based on so-called boundary layer (BL)
meshes. Most of second-order unstructured CFD numerical schemes need a boundary layer
(BL) mesh to accurately approximate the speed profile around a body during a viscous simula-
tion (see, e.g. [Löhner 1993, Pirzadeh 1994]). When generating a BL mesh, the first difficulty
is to deal with the very high aspect ratios of the elements (O(103 − 105)) as the width of the
boundary layer depends on the local Reynolds number [Löhner 2001]. So far, the generation
of BL has been carried out by an extrusion of the initial surface along the normals to the sur-
face [Bottasso 2002, Löhner 1993, Löhner 1999, Pirzadeh 1994] or by local modification of the
mesh [Marcum 1996]. Using the normals as sole information requires several enrichments to
obtain a smooth layers transition on complex surfaces [Aubry 2009, Garimella 2000, Ito 2002,
Ito 2006]. These techniques rely on a complex pre-processing of the surface in order to extract
additional geometric information as convex or concave ridges. The last but not least difficulty
arises once the BL process is finished. Indeed, in most methods, a global mesh generation pro-
cess is used to close the volume. Both Delaunay method or frontal methods are susceptible to
fail in presence of anisotropic faces. In the aforementioned methods, the BL mesh generation
is performed in a unique pre-processing procedure/step that is done prior to any computation.
Consequently, achieving a full coupling between RANS mesh generation and mesh adaptation is
tedious and remains a challenge if standard techniques are used. Simpler strategies have been
devised as keeping the BL layer mesh. However, in many applications adapting the surface is
mandatory to keep an accurate result. As a result, the way classical BL mesh generation has
been designed so far requires major changes in order to be used together with anisotropic mesh
adaptation.

One solution is to design an operator than handles conjointly quasi-structured mesh gener-
ation and anisotropic mesh generation. This is the scope of the unique cavity-based operator.

Outline. We first introduce the cavity-based framework along with a simple validity principle.
Extensions of standard operators (insertion, collapse, swaps) are detailed. We then describe the
optimized adaptive mesh generation process based on this framework. The case of boundary
layer mesh generation is then described by using a constrained version of the operator. Finally,
several numerical simulation with fixed boundary layer or fully adapted boundary layers are
presented.

2.2 Cavity-based operators

A complete mesh generation or mesh adaptation process usually requires a large number of
operators: Delaunay point insertion, edge-face-element point insertion, edge collapse, point
smoothing, face/edge swaps, etc. Independently of the complexity of the geometry, the more

2.2. Cavity-based operators 33

Figure 2.1 – A supersonic viscous bullet (left) from NASA media library and adaptive
shock/boundary layer interaction (rigth) excerpt from [52]. Both examples contain interaction
between the viscous boundary layer and anisotropic phenomena (red squares).

operators are involved in a remeshing process, the less robust the process may become. Conse-
quently, the multiplication of operators implies additional difficulties in maintaining, improving
and parallelizing a code. The unique operator is then an additional way to help maintain and
improve globally an adaptive mesh generation process. We describe in this section its derivation,
validity and how it naturally extends traditional standard local operators. We also focus on the
case where a surface point needs to be inserted or move to the real surface position.

2.2.1 Extension of standard operators

The cavity-based operator is inspired from incremental Delaunay method [Bowyer 1981] and
[Watson 1981, Hermeline 1982] where the current mesh Hk is modified iteratively through se-
quences of point insertion. The insertion of a point P can be written:

Hk+1 = Hk − CP + BP , (2.1)

where, for the Delaunay insertion, the cavity CP is the set of elements of Hk such that P is
contained in their circumsphere and BP is the ball of P , i.e., the set of new elements having P
as vertex. These elements are created by connecting P to the set of the boundary faces of CP .
We assume that Hk and Hk+1 are 3D simplicial meshes, i.e., composed only of tetrahedra and
triangles. These meshes are said to be valid if all tetrahedra have a positive volume. note that
if a hybrid mesh is given as input, it is pre-processed to be decomposed into a simplicial mesh
following the procedure given in [Dompierre 1999]. In what follows, capital letters as A, B, . . . ,
P denote points of R3, except K that usually denotes an element (triangle or tetrahedron). In
addition to BP , the ball of P , i.e., the list of elements surrounding P (having P as vertex), we
also consider SAB, the shell of edge AB, i.e., the list of elements having A and B as vertices.
Topological entities as balls and shells are computed on the fly by using the elements storage
data structure. Consequently, we assume that for each tetrahedron, we know the neighboring
tetrahedra (or boundary faces) seen across the 4 faces. We refer to [George 1998] for more
details. In the cavity-based framework, the cavity is just a set of tetrahedra and is no longer

34 Chapter 2. Unique cavity-based anisotropic framework

related to any Delaunay criteria. Instead, we assume that Cp has the following property:

Given any two tetrahedra K1 andK2 in Cp,
there exists a path trough faces’ of tetrahedra in Cp

that links K1 and K2.

(2.2)

Note that this property holds for the balls of vertices and the shells of edges. We denote by CP
the external faces of CP . It is composed of boundary faces (triangles) and internal faces. For
each internal face CP , the neighboring tetrahedron viewed from this face is not contained in CP .
Given an oriented face [A,B,C] and a normal n, the visibility of n with respect to [A,B,C] is
the dot product between n and the normal to the face. In a similar way, a point P is visible
for an oriented face [A,B,C] if the volume of the tetrahedron [P,A,B,C] is positive. We now
state the fundamental property: Given a valid mesh H, a point P and a set CP , if (2.2) holds
for CP and P is visible for all faces of CP then the mesh given by H − CP + BP is valid. The
local mesh modification operators derived in this chapter are based on this property.

The main idea of the cavity definition consists in recasting each meshing operator as a node
(re)insertion. The initial choice of the cavity defines the underlying operator. For each operator,
we just have to define judiciously which node P to (re)insert and which set of volume and surface
elements will form the cavity C where point P will be reconnected with RP :

Hk+1 = Hk − CP +RP . (2.3)

When a point is reinserted, a subset of its ball is reconnected or re-created. We then prefer
the notation RP rather to BP . Similarly, the cavity is no more only related to the point being
inserted as in the Delaunay point insertion method. According to the previous validity principle,
if Hk is a valid mesh (only composed of elements of positive volume) then Hk+1 will be valid
if and only if CP is connected (through internal faces of tetrahedron) and RP generates only
valid elements. In Fig. 2.2, we list the initial cavity choice along with the point to (re)insert
for the collapse, insertion and swap. As it, the cavity operators are equivalent to their standard
counterparts. However, using the cavity formalism allows to easily modify the cavity to enforce
automatically the operator. The cavity enlargement correction is one example of such correction
and is given in Algorithm 1. The basic idea is to enlarge the cavity to make sure that CP becomes
valid. To illustrate this feature, we consider a simple 2D example where we want to relocate
a point A to a new position Anew, see Fig. 2.3. Given the initial configuration, we see that a
collapse, then a swap and finally a point-smoothing is needed to actually move A to Anew. To
do this, 4 volumes are computed for the collapse, 2 for the swap and finally 7 for the point-
smoothing. Then, if we use the cavity version, the initial cavity has 2 negative faces (in red
in Fig. 2.3, bottom). Using the cavity enlargement Algorithm 1, a valid cavity is found in 3
enlargement iterations. To build the final CP , 4 volumes are computed with the initial cavity, 4
for the first iterations, 2 for the second and 2 for the third. The cost of using the cavity moving
is 12 volumes computations whereas 13 volumes are needed with the standard operators. The
most interesting feature is that the cavity operator creates automatically the combination of
simple operators without the need to know in practice the sequence. From a practical point of
view, only one operator is used for the meshing operators. This feature is particularly interesting

2.2. Cavity-based operators 35

when the initial mesh has strong anisotropic components near the boundary surface mesh. In
this case, the cavity operator is used to enforce the insertion of a surface independently of the
density and configuration of the given initial mesh.

The use of the previous cavity-based operators allows us to design a remeshing algorithm
that has a linear complexity in time with respect to the required work (the sum of the number
of collapses and insertions). On a typical laptop computer Intel Core I7 at 2.7 GHz, the speed
for the (cavity-based) collapse is around 20 000 points removed per second and the speed for
the insertion is also around 20 000 points or equivalently 120 000 elements inserted per second.
Both estimates hold in an anisotropic context [45].

Collapse
edge AB A

B

A A

Hk Hk − Cball(B) Hk+1 = Hk − Cball(B) +RA

Insert point
P

P

A

B

P

A

B

P

A

B

Hk Hk − Cshell(A,B) Hk+1 = Hk−Cshell(A,B)+RP

Swap edge
AB

A
P

B

A
P

BB

A
P

BB

Hk Hk − Cshell(A,B) Hk+1 = Hk−Cshell(A,B)+RP

Figure 2.2 – Three 2D meshing operators reinterpreted as a cavity-based operator with an
appropriate choice of the point to be (re)inserted and cavity to be remeshed. From top to
bottom, the collapse, insertion and swap operators.

36 Chapter 2. Unique cavity-based anisotropic framework

Standard approach with multiple simple operators

Collapse Swap Relocation 3 Final

Cavity-based approach with automatic cavity corrections

Initial cavity Iteration 1 Iteration 2 Iteration 3

Figure 2.3 – Illustration of the relocation of point A to a new position Anew. Top, if standard
operators are used, the following sequence has to be applied: collapse, swap, relocation. Bottom,
with the cavity enlargement, 3 enlargement iterations are needed to perform the operation.

Projection of point (target) Initial Cavity Corrected (valid) cavity

Figure 2.4 – Illustration of surface point insertion (blue curve) where the standard operator
(middle) is rejected whereas the cavity correction allows to insert the point (right).

2.3. Optimized unit mesh generation 37

Volume Part:
For each K in CP

For each face [A,B,C] such that P /∈ [A,B,C] :

if volume(A,B,C, P) < 0 , then

if P is a surface point then reject
else add neighboring tetrahedron to CP
endif

endif

EndFor

EndFor
if CP is modified goto Volume Part.

Algorithm 1: Cavity enlargement for (re)insertion of P

2.3 Optimized unit mesh generation

The scope of this step is to obtain a mesh where the lengths of the edges are in the interval

[
1√
2
,
√

2]. Instead of repeatedly doing insert and collapse as in Chapter 1, this procedure is

composed of 3 fixed phases: collapse, creation of new points, anisotropic filtering and insertion.
The anisotropic filtering is then added to make sure that a new insertion will not create the
need for a future collapse.

2.3.1 Collapse

For this phase, an iterative procedure is used. The current mesh is iteratively scanned and
while there exists an edge with a length lower than 1/

√
2, we try to collapse this edge with

the cavity-based collapse. At the end of the process, all edges must have a length greater than
1/
√

2. During all the following phases, the collapse is never used again.

2.3.2 Creation of edges

In this phase, we create the set of points that would be needed to decompose all long edges in
segments having a length close to one in the metric. As for the collapse, the algorithm consists
in scanning the current mesh and while there exists an edge with a length greater than

√
2,

create one or multiple points. During this phase, the topology of the mesh is kept unchanged
so that the points are not inserted. Indeed, neighboring edges can generate similar points or
points very close to each other, so it is important to filter out the points that are too close (in
the metric). For that, we define the anisotropic filtering.

38 Chapter 2. Unique cavity-based anisotropic framework

2.3.3 Anisotropic filtering and insertion

In this phase, the length between the points created in the previous phase is checked and only
a subset of points is inserted. For the filtering, we use an octree of points. Each octant can
contain up to 10 points before being subdivided. Initially, the octree contains the surface points
and the volume points remaining from the collapse phase. To validate the insertion of a point,
we first check the distances between all points that are in the octant containing the point to be
inserted. If no rejection occurs, then the current octant is intersected with the bounding box of
the metric. All the intersected octants are checked starting from the octants closer to the point
being inserted. Then, each point that is accepted for insertion is inserted in the octree together
with its metric. At the end of the filtering, whatever the connectivity generated by the insertor
the edges will have an admissible length (as the length was checked in every direction with the
octree). This property prevents us from having to perform additional collapses that is the most
costly operator.

The standard initial cavity-based insertion is based on an Delaunay cavity criterion that is
modified to comply with the size of the metric field. It is composed of any element K verifying:

αM(P,K) =
‖OP‖M
(rK)M

< 1, (2.4)

where P is the point being inserted, O the center of the circumcenter of K computed in M
and rK the radius computed inM. WhenM is varying, Equation (2.4) is not straightforward
to compute, so we use the modified Delaunay criterion defined in [Dobrzynski 2008] instead. It
relies only on point-wise metric evaluation:

αM(P)(P,K) < 1,
4∑
i=1

αM(Pi)(P,K) + αM(P)(P,K) < 5, Pi ∈ K.

The previous operator prevents the suppression of edges/faces having an admissible size inM
while having bad angle for the standard Delaunay. Consequently, the creation of slivers is not
handled by this operator. We add the additional control (1.16) on the height defined in Chapter 1
to avoid their creation. The idea consists in controlling the height of the tetrahedron in addition
to its volume. Once the anisotropic cavity is computed, the external faces of the cavity leading
to a valid tetrahedron (positive volume) are checked to verify that their heights are greater than
the minimal possible height given by the metric M(P). The cavity is then reduced to remove
negative volume elements and elements that do not verify (1.16). The previous formula simply
states that the worst height of a unit tetrahedron is found when the height vector is aligned
with the eigenvector of minimal size. This modification reduces the number of slivers and also
reduces the amount of optimization (swaps).

2.3.4 Optimization of the mesh

During this phase, only the topology of the mesh is modified by using edges or faces swaps,
see [Frey 2008] for the details of these operators. The only constraint is to make sure that the
quality in the metric is strictly improved at each application of a swap.

2.4. A constrained version of the operator 39

2.3.5 Surface approximation

During the generation of the adapted surface mesh, two components play a crucial role for the
quality of the final generated mesh. The first one is related to the surface approximation, it
is necessary to maintain a sufficient level of fidelity of the geometry. To do so, two different
options, a discrete and a continuous one, are used to control the geometry approximation. The
second component is related to the insertion of a surface point with a volume attached to it.

For the discrete approach, a fine and fixed discrete mesh is used as a background support.
The surface points along with their normals at the points are computed using this support. In
addition, a surface-based metric is recovered and intersected with the current computational
metric in order to control the required level of fidelity. We refer to [57] for a detailed description
of the process. When a continuous description of the geometry is provided, as a CAD geometry,
the newly created surface points are projected onto the continuous position by querying the
CAD. In what follows, we use the discrete approach for all the numerical examples where the
surface is approximated by a 3rd order (curved) mesh.

2.4 A constrained version of the operator

We consider in this section the generation of a boundary layer mesh starting from a given
surface mesh. For simplicity, we focus only on the generation of the volume mesh meaning that
the surface mesh that supports the boundary layer is kept constant during the whole process. No
hypothesis is made on the features of the surface mesh. In particular, the process should handle
anisotropic surface meshes. The main modification consists in defining a constrained version
of the cavity operator. We then exemplify specific choices of CP leading to the generation of
quasi-structured elements.

2.4.1 Boundary layer mesh generation by point insertion

The cavity inserter is now turned into a constrained point inserter. We detail the main mod-
ifications. When Pnew is inserted along a normal, the previously created elements that are in
the boundary layer mesh should be kept. Consequently, a set K of (constrained) tetrahedra in
the boundary layer is created and updated after each insertion. The cavity enlargement proce-
dure of Algorithm 1 can exit if during the process a constrained element is added to CP . The
cavity initialization is also modified to remove from BP elements that belong to K. In order
to ensure (2.2), it is necessary to verify that BP minus the constrained elements is still con-
nected (to verify the validly principle). From a technical point of view, as Pnew is not initially
(topologically) present in the mesh (contrary to the case where P is moved), the main difficulty
is related to the surface part of Algorithm 1. Indeed, every boundary face [A,B,C] will never
contain Pnew, so additional information is required to derive each connected component type.
We can now state the main result for the case where the point is extruded along one normal
only (mono-normal):

In a mono-normal context, previous inserter with initialization Cp = BP −K,
automatically generates quasi-structured elements.

(2.5)

40 Chapter 2. Unique cavity-based anisotropic framework

Figure 2.5 – Depending on the configuration of normals, different kinds of elements (tetrahedron
or prism) are recovered: vertex-based (left), edge-based (middle) and face-based (right).

Figure 2.6 – Two examples of the automatic process of prisms creation around a point. The final
decomposition of prisms (in tetrahedra) depends on the order of the insertion of points.

We first remark that if Pnew is inserted along a normal direction issued from P , the final mesh will
contain the edge PPnew. Then if face [A,B,C] belongs to CP , then tetrahedron [A,B,C, Pnew]

is created. Consequently, given a face [A,B,C] with the extruded vertices [Anew, Bnew, Cnew],
insertion of Anew will create tetrahedron K1 = [A,B,C,Anew], insertion of Bnew will create
K2 = [Anew, Bnew, B,C] and insertion of Cnew will create K3 = [Cnew, Anew, Bnew, C]. The
union of K1,K2 and K3 forms the prism [A,B,C,Anew, Bnew, Cnew]. Note that K1,K2 and K3

should be added to K after each insertion. The update of K is based on the different sets of hybrid
elements than can be created, see Fig. 2.5. We illustrate in Fig. 2.6, different prisms construction
around the ball of a point. Note that changing the order of insertion of the extruded points
will lead to different decompositions of the prismatic mesh. Consequently, the point insertion
can be a priori optimized in order to favor the creation of the smallest diagonal edges when a
quadrilateral face of a prism is decomposed. In addition, according to the current configuration,
the remaining points cannot be inserted in any order as this may lead to an invalid decomposition
(known as the Schönhardt’s prism). It is thus necessary to loop over the remaining points in
order to solve this issue. Usually, no more than 5 iterations are required to insert all the points.

2.4.2 Possible enhancements with multi-normals and merge

Two main drawbacks of using only one normal per point arise at closed and opened ridges. At
closed ridges, the normals may cross, leading to invalid elements. At opened ridges, the quality of
the elements decreases as the deviation between the normals may be large. A common practice
to solve this issue is to smooth the normals [Aubry 2009]. In our approach, we can choose
different initialization of CP in order to improve the boundary layer mesh quality.

2.4. A constrained version of the operator 41

Figure 2.7 – Example of extruding a boundary layer from a closed ridge. The merge of normals
(left) allows to create regular elements (hexahedra) whereas smoothing of normals is required
(right) to avoid normal crossings.

In order to reduce the number of invalid elements, we pre-process the given normals and current
size and predict the volume of elements. For each invalid element found, we attempt to collapse
the normals until no more negative element is found. For a face, if three normals are merged,
a tetrahedron is created, whereas a pyramid is created when two normals are merged. Normals
are merged according to a minimal distance criterion. If we denote by (Pi)i=1,k the list of points
associated with a given list of merged normals, the cavity is then initialized by

⋃BPi −K. The
standard inserter is then called with this initialization. We illustrate this operator on a simple
cube geometry where 2 faces support the boundary layer mesh. Theses surfaces are adapted
to follow the normal size distribution. Consequently, without normal smoothing, normals cross
each other at each step. We can see that the quality of the generated boundary layer mesh is
improved with the merge of normals, see Fig. 2.7.
The multi-normal case is the most complicated. The way the cavity CP is initialized is crucial to
ensure the desired connectivity. Given P and a (minimal) set of normals, we start from the list
of the (interface) faces that surround P . Interface faces are the boundary triangles for the first
layer and then become the internal faces defining the frontier between the previous and current
layers. Note that these faces are part of CP . We then assign each face to a normal by trying to
maximize the visibility criterium. In addition, for a given normal, the faces of the list should be
adjacent by edges. If two many normals are given, remaining normals with no more faces are
not inserted. For a normal n associated to the list of faces L = (Fi)i, the cavity is initialized by
CP =

⋃
AB∈Fi,Fj SAB, where AB is an edge shared by two faces of L. The inserter is then called

normally with this initial choice of CP . We illustrate this procedure on a simple opened ridge.
Fully structured elements are automatically created as in the merged case, see Fig. 2.8.
The main difficulty when using merged and multi-normals consists in the recovery of constrained
elements in order to update K. In the mono-normal context, only face prisms are recovered
whereas in this case, constrained elements can also be point-based and edge-based, see Fig. 2.5.
Algorithm 2 summarizes the complete process.

2.4.3 Boundary layer examples

We exemplify the use of this operator on different complex geometries: an ONERA M6 wing, a
shuttle, a missile and a landing gear. The CPU time for the missile to insert a layer is around 10
sec (600 000 prisms / layer), see Fig. 2.9. For the landing gear geometry, the CPU time to insert

42 Chapter 2. Unique cavity-based anisotropic framework

Figure 2.8 – Example of extruding a boundary layer from an opened ridge. The use of multi-
normals allows to create regular elements (hexahedra): global and closer views around the ridge
of the surface mesh (left and middle), view in the volume mesh (right).

While (1)

1. Recover the interface surface mesh (between current layer and previous layer)

2. Compute normals and multi-normals

3. Fictive extrusion of the boundary layer : optimize the layer with the merge of normals

4. Insert extruded points in the following order:

• along merged normals

• along multi-normals

• along mono-normals to close the boundary layer volume

5. Optimize the current layer: diagonal swapping and point smoothing

EndWhile
Algorithm 2: Boundary layer mesh generation

a layer spans from 8 sec to 35 sec when all the points are inserted (e.g. 800 000 prisms / layer),
see Fig. 2.10. For 25 layers, the total CPU time is around 5 min. Note that the remaining
volume mesh between the boundary layer mesh and the outer surface of the domain is not
optimized either in quality or in size. This is done in a different optimization step allowing to
adapt the mesh with respect to a given anisotropic metric field or to a uniformly graded metric.
Consequently, we can see that the process can insert a boundary layer mesh in an already high
density mesh, see Fig. 2.10, but also in a very coarse mesh, see Fig. 2.9.

2.4. A constrained version of the operator 43

Figure 2.9 – Boundary layer mesh generation around a complex missile geometry starting from
a coarse initial volume mesh.

Figure 2.10 – Boundary layer mesh generation around a landing gear geometry.

44 Chapter 2. Unique cavity-based anisotropic framework

Figure 2.11 – CRM geometry and engine design with outlet bypass and outlet core.

2.5 Numerical examples

We describe in the section several complex numerical examples. They are all based on 3D cases
when solving the RANS equations.

2.5.1 Contrail formation

This example investigates contrail formation in the near field of an aircraft. A complete de-
scription and physical findings of the test case are documented in [34]. Contrail formation is
a complex topic, since several physical processes are involved, covering a large range of space
and time scales, from the engine exit to the atmospheric global scale. We focus here on the
mesh adaptation procedure that is used to observe the plume 1km after the aircraft. Three-
dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations of contrails produced by the
Common Research Model wing/body/engine configuration during cruise flights is performed.
The Cedre flow solver of ONERA is used. In the present work, a dedicated internal nozzle ge-
ometry has been designed to replace the through flow nacelle of the original CRM configuration,
see Fig. 2.11. The initial atmospheric conditions were chosen so that a contrail was expected
to appear. The ambient temperature was set at 223 K and pressure at 264 hPa to simulate
cruise conditions at an altitude of about 34 000 ft. The mesh is composed of a boundary layer
mesh (generated with the constrained operator) while the outer field is adapted on the cross
flow velocity in L2 norm. Five adaptative steps were performed leading to sizes with 6 701 472,
4 140 630, 4 514 154, 5 380 312, 7 219 502 tetrahedra. The boundary layer is kept constant during
the refinement and it is composed of 13 143 807 prisms and 95 668 pyramids. We observe that
the final adapted mesh contains almost the same number of tetrahedra that the initial one. The
temperature and mesh distribution is depicted in a plane located at 8 spans behind the air-
craft, see Fig. 2.12. These results show the efficiency and the relevance of the mesh refinement
algorithm which allows to capture the salient features of the vortical flow in the wake of the
aircraft, but also the jet stream and the interaction between the vortex and the jet, see Fig. 2.13.
This capability is really of great importance when you are studying contrail formation. Indeed,
as already said before, contrail formation and its evolution are complex processes leading to a
spatially inhomogeneous distribution of gaseous constituents and primary particles, whose evo-
lution is led by thermodynamic conditions and aircraft parameters. In particular the vortex/jet
dynamic is verified by using this procedure.

2.5. Numerical examples 45

Figure 2.12 – Cut plane and temperature at 8 span behind the wingtip: mesh 1 to 5 from left
to right side.

Figure 2.13 – Streamlines colored by element on aircraft: wing in blue, horizontal tail plane in
green, engine core flow in red and engine bypass in orange.

46 Chapter 2. Unique cavity-based anisotropic framework

2.5.2 High-lift CRM

We present our mesh-adaptive solution computations on the high-lift version of the NASA CRM
(HL-CRM) geometry used for the 3rd AIAA CFD High Lift Prediction Workshop [Rumsey]
(HLPW3). We consider the geometry with the full chord flap gap which corresponds to the case
1b of the workshop with the following flow conditions:

Mach number Angle-of-Attack Reynolds number Temperature (K)

0.2 16 3.26e6 288.15

The geometry has been transformed in meters, so in that case the reference length is 7.00532 m

and the reference surface is 191.84477 m2. For the mesh adaptation, we the feature-based
error estimate controlling the interpolation of the local Mach number in L4-norm. We use the
INRIA Wolf flow solver [47] in this case. The underlying numerical scheme to solve the RANS
equations is detailed in [5]. This solver allows to use fully unstructured anisotropic grids, even
for the boundary layer. For each error estimate, we perform a maximum of nadap = 20 mesh
adaptation iterations at each fixed complexity and for the convergence study we consider five
complexities:

{320 000, 640 000, 1 280 000, 2 560 000, 5 120 000} .
We start the convergence study with an initial mesh composed of 229 263 vertices, 726 852

tetrahedra and 384 868 triangles on the surface. This is a very coarse inviscid mesh without
any boundary layer or any specific refinement for viscous flows, in other words no meshing
guidelines, thus very easy and quick to generate. We choose to start from this coarse and clearly
unresolved mesh to illustrate the non-dependency of the mesh-adaptive solution platform to
the initial data. In Figs. 2.14 and 2.15, we observe the major difference between the meshes
obtained with adaptation and the tailored meshes based on a priori knowledge. In particular,
the point distribution on the leading edge are not the following the same pattern. The traditional
boundary layer as depicted in Fig. 2.15 clearly shows that a loss of accuracy is obtained for the
main wake whereas the wake is fully adapted in the adaptive case from the slats to the flaps.
The convergence of the adaptive procedure depicted in Fig. 2.16 emphasizes the fast convergence
of the lift and drag with a drastic reduction of the degrees of freedom.

2.5.3 NASA Rotor 37 and periodic mesh adaptation

The NASA Rotor 37 is a low aspect ratio compressor inlet stage 3D test case [Reid 1978], which
geometry is shown in Fig. 2.17 (left). The regime considered is described in Table 2.1. The
compressor being transonic, shocks appear, interacting with other blades through periodicity
which requires an appropriate discretization, unknown a priori and that depends on the flow
regime. The bow shock formed in front of each blade induces a boundary layer detachment on
the next blade, which modifies the mass flow. Similarly, the tip gap vortex that forms in the gap
between the blade and the casing then interacts with the neighboring blade and is responsible
for instabilities in some cases. It is thus critical to accurately predict the behavior of these flow
features.

For numerical simulation, the flow is assumed to be periodic, so that the numerical domain
can be restricted to a single blade in a 10◦ sector depicted in Fig. 2.17. In this work, we

2.5. Numerical examples 47

0.71M nodes 10.2M nodes

Figure 2.14 – Wakes and surfaces meshes for adapted meshes for the two last complexities with
0.71M nodes (left) and 10.2M nodes (right).

48 Chapter 2. Unique cavity-based anisotropic framework

Figure 2.15 – Mesh density comparisons between tailored meshes (left) and adapted meshes
(right).

2.5. Numerical examples 49

0.71M points : CL = 2.055085

1.40M points : CL = 2.190013
2.75M points : CL = 2.262045

5.52M points : CL = 2.305487

8M points 26M points

70M points 206M points

10.2M points : CL = 2.334335

Figure 2.16 – Comparison of the estimated lift (blue stars) with all the workshop entries

50 Chapter 2. Unique cavity-based anisotropic framework

Figure 2.17 – Full compressor stage geometry with RO37 inlet (left) and computational domain
(right).

perform feature-based mesh adaptation, minimizing the interpolation error of the Mach field in
L2-norm. The Wolf flow solver is used [28]. Five iterations are computed at each of the following
complexities:

{200 000, 400 000, 800 000, 1 600 000, 3 200 000} .

Inflow Total Pressure 1.013× 105 Pa

Inflow Total Temperature 300.0 K

Outflow Pressure 1.013× 105 Pa

Rotating Speed 1 800 rad.s−1

Dynamic viscosity 1.716× 10−5 Pa.s−1

Table 2.1 – NASA Rotor 37 test case description.

The whole domain is adapted, including periodic boundaries and boundary layers with full
unstructured mesh. The geometry of the domain is prescribed with cubic reconstruction from
the initial mesh, for surface adaptation.

In order to assess the effect of periodic mesh adaptation, we compare an adapted mesh gen-
erated with periodic mesh adaptation containing 3.516.488 vertices and 20.294.221 tetrahedra,
to an adapted mesh generated without periodic mesh adaptation, containing 6.607.814 vertices
and 38.835.389 tetrahedra. Moreover, in the latter, a fixed structured boundary layer has been
added. Fig. 2.18 shows a global view of the periodic frontier in both cases. In the non-adapted
case, it is left unchanged and is thus the same as the initial mesh. Meanwhile, in the adapted
case we observe that all structures of the flow have been successfully adapted, in particular the
shocks upstream and the wake downstream. This discretization has in turn a very strong impact
on the solution. In particular, we can see in Fig. 2.19 a close up view on the periodic frontier,
where a shock crosses it. It is clear that in the non-adapted case the initial discretization is too
coarse to deal with such structures. Moreover, we can tell the discrepancy between the mesh
size required in the volume by the adaptation and on the surface. This apparent discontinuity

2.6. Conclusion 51

creates ill-conditioned elements with a strong anisotropy in the opposite direction and an abrupt
transition. This will in turn lead to the breakdown of the solver.

We now investigate the impact of this improper discretization on the mesh. Although both
computations have been done in a single 10◦ sector, we duplicated the meshes for visualization.
Fig. 2.20 shows a cut in the mesh perpendicular to the axis of the blade. We can see the shocks
produced by the leading edge of the blade propagating upstream. These shocks are clearly
diffused by the periodic frontier when it is not adapted, they barely cross it four times, while
in the adapted case, shocks are unaffected by the boundary and propagate up to the inflow.
Moreover, while in the adapted case the periodic junction is seamless and barely visible, the
non-adaptation of the periodic frontier yields a strong constraint in the mesh which makes it
frankly visible. This produces a lot of noise in the mesh and the solution.

A closer look at the shocks near the leading edge reveals in Fig. 2.21 how the two leading
edge shocks are actually suddenly artificially diffused as they cross the periodic frontier. We
can tell how this affects the solution as the second one seems to even disappear while the first
one is actually reflected and hits the blade back. After, in front of the lambda shock we see in
the adapted case a secondary shock which is absent in the non-adapted case. Here again, the
junction is seamless in the adapted case, while the non-adapted case produces concentration of
ill-conditioned elements next to the periodic boundary condition. An even closer look at the
shock boundary layer interaction where the lambda shock hits the blade shows how the shock
is diffused by the non-adapted domain. We can tell the size of the elements on the frontier by
the spread of the shock that is created by this interaction. This interaction directly modifies
the shape of the shock but also generated a wake in the middle of the vane which modifies the
debit and velocity of the flow.

Finally, Fig. 2.22 shows a global view of another cut perpendicularly to the blade. This
summarizes the aforementioned observations, we can see how the Mach field shocks are diffused
in the non-adapted case and does not propagate upwind as far as with periodic adaptation.
We also observe in the Mach field the reflection of the shocks on the periodic frontier and the
generation of a huge artificial wake. Finally, we distinguish a similar impact of the discretization
on the wake. Overall, the solution obtained with periodic mesh adaptation is definitely cleaner
and the use of mesh adaptation without periodicity definitely pollutes the solution.

2.6 Conclusion

The unique-cavity based operator defines a convenient framework for adaptive mesh generation.
It allows us to define a much more efficient adaptive mesh generation strategy. The choice
of the initial cavity defines the baseline desired operator. From a practical point of view, the
same operator is used throughout the code and any modification of the operator (to handle
hybrid entities, non-manifold entities) implies an automatically upgrade of the entire code. The
software is then easily maintained and extended. By minimizing the number of rejected mesh
modification operations with appropriate cavity corrections, like the collapse or insertion of
surface point, it naturally speeds up the overall process, up to a factor 40 with respect to the
trivial approach of Chapter 1. The high level of flexibility of the operator is illustrated with its
constrained version of the operator to generate hybrid or boundary layer meshes from an initial

52 Chapter 2. Unique cavity-based anisotropic framework

Figure 2.18 – NASA RO37: Global view of the mesh (top) on the periodic frontier in the
non-adapted (left) and adapted case (right), and the corresponding Mach field (bottom).

Figure 2.19 – NASA RO37: Impact of the discretization of the periodic frontier on a shock.

Figure 2.20 – NASA RO37: Propagation of shocks upstream of the RO37 blades without (left)
and with (right) periodic mesh adaptation.

2.6. Conclusion 53

3D mesh. In addition to the improvements of turbulent flow solver and error estimates, the level
of anisotropy on the surface and volume becomes sufficient to observe spatial convergence rate
on challenging RANS computing as in turbomachinery or high-lift computations while mostly

Figure 2.21 – NASA RO37: Zoom on the leading edge shocks of the RO37 blades without (left)
and with (right) periodic mesh adaptation.

Figure 2.22 – NASA RO37: Global view of the mesh (top) and the solution (bottom) in a cut in
the domain perpendicular to the blade without (left) and with (right) periodic mesh adaptation.

54 Chapter 2. Unique cavity-based anisotropic framework

inviscid computations were performed in the previous chapter.
A uniform and predictable speed is guaranteed for the mesh adaptation phase. On typical

intel Core i7 at 2.7Ghz, the cavity-based collapse reaches 20 000 points removed/sec and the
cavity-based insertion 20 000 points inserted/sec. This predictability in speed with a strong
anisotropy is one of the crucial properties that are used for the parallelization introduced in the
next chapter.

Chapter 3

Metric-aligned, metric-orthogonal and
parallelism

The mesh generation algorithm of Chapter 2 reaches two limitations. First, the shape of the
elements, and thus the quality, cannot be explicitly controlled. Indeed the new vertices are
generated from the set of long edges in the metric of the current mesh. The second limitation is
the parallelism. If meshes containing more than 120 million tetrahedra are routinely generated
in serial, a much bigger number of elements are needed to verify the asymptotic convergence on
complex cases. Consequently, a parallel adaptive strategy is required.

To address the first issue, we define a strategy to generate metric-orthogonal meshes, i.e.
composed of elements aligned with the eigenvectors of the metric field. This strategy relies
on the cavity-based operator within an anisotropic frontal insertion of points. For the parallel
strategy, dedicated mesh partitioning schemes are presented. They are based on metric-based
work estimates. Again the cavity operator allows to accurately predict the CPU time of each
step of the remeshing process. We illustrate these two enhancements on several 3D numerical
examples.

The metric-aligned and metric-orthogonal approaches are based on a collaboration with
Mississippi State University [45, 43] while the parallel implementation was done during the PhD
thesis of V. Menier [9, 48, 39] and validated with the Unstructured Grid Adaptation Working
Group [31].

Ouline. The chapter is decomposed into two distinct parts. The first one focuses on the metric-
aligned and metric-orthogonal meshing strategies while the second part focuses on the parallel
implementation of the adaptive mesh generation process.

3.1 Mesh adaptation with orthogonality and alignment

During an adaptive remeshing process based on the unit-mesh concept using standard or cavity-
based operators (as described in Chapters 1 and 2), the shape of the created unit elements is
not controlled. Indeed, as a unit element is given by M− 1

2 RK [11], where K is the regular
triangle or tetrahedron and R a rotation matrix, the edges of a unit element can span all the
directions of the space, see Fig. 3.2. In addition, the eigenvectors of (M(x))x∈Ω are never
explicitly used in the distance, volume or quality function. As a result, all the anisotropic mesh
generators produce anisotropic elements where the edges have no particular orientation. If an
equal level of interpolation error (in L1 norm) can be achieved on these unit elements [11], their
dihedral angles or error level in L2 or H1 norms are greatly different. These quantities are
not optimized in classical anisotropic mesh adaptation although they may unfavorably impact

56 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Figure 3.1 – Comparison with a standard anisotropic mesh (left) and the equivalent aligned
mesh.

the quality of a numerical simulation. We will show how to enforce the alignment of the edges
with the local eigenvectors of the provided metric. As the eigenvectors are orthogonal, such
meshes are called metric-orthogonal or quasi-structured meshes [Sharbatdar 2013, Krause 2003].
In particular, when an isotropic metric field is provided, Cartesian grids are recovered with
elements aligned with the x-y-z directions. An example of metric-orthogonal mesh for a shock
waves is depicted in Fig. 3.1 (left) and compared to classical anisotropic mesh generation (right).
These two meshes are equivalent in terms of length distribution (and then on interpolation error
level). However, the quality and angles of the triangles are clearly improved for the orthogonal
and aligned approach.

As we want to force the alignment of the edges, standard local remeshing approaches based
on a set of classical operators (insertion, collapse, swap, . . .) as in [57, Michal 2011] seem to
be more delicate to use as they iteratively modify the mesh with no specific ordering. On the
contrary, frontal methods have been used to generate high-quality isotropic meshes but with little
success for anisotropic mesh generation. We combine both approaches: only local operators are
used in order to ensure robustness and a frontal insertion of points is used in order to control the
alignment of vertices along the eigenvectors of (M(x))x∈Ω. However, contrary to fully frontal
mesh generation techniques [Löhner 1988b, Mavriplis 1995] where a front of points/elements
is used to fill the computational domain, the points are inserted in an empty volume mesh.
An empty mesh is a valid volume mesh composed of a minimum (or a small) number of volume
points, while the surface mesh is assumed to be adapted to the input metric. Inserting the points
in an empty volume mesh is motivated to avoid the collision of the frontal points with already
existing volume points. Note that empty meshes are usually generated after the boundary
recovery phase in typical mesh generation algorithm [Baker 1987, George 1998]. However, if
such mesh is not available, it is possible to define a fast coarsening cavity-operator to quickly
reach the empty mesh state. The initial metric field is stored on a background mesh so that it
is easy to interpolate the metric for the frontal creation of vertices. The interpolation scheme is
based on the log-Euclidean framework, see Eq. (1.5), as explained in Chapter 1. Consequently,
in order to reduce the computation of the interpolation, the metric is stored on the background
mesh and it is stored in logarithmic form. This avoids multiple diagonalization steps. Starting
from the initial set of points of the surface mesh, new points are created along eigenvectors or
preferred directions at unit length and then inserted in the current mesh. Both coarsening and
insertion operators are based on the cavity-based framework described in Chapter 2.

3.2. Metric-orthogonal and metric-aligned anisotropic mesh generation 57

Figure 3.2 – Illustration of several unit tetrahedron with respect to a 3D metric represented by
its unit ball.

3.2 Metric-orthogonal and metric-aligned anisotropic mesh gen-
eration

Starting from a provided input 3D valid volume mesh and metric, the generation of an adapted
metric-orthogonal or metric-aligned mesh is a combination of the previous operators with a
frontal algorithm to propose the points to be inserted. We detail in the following, all the steps
involved in this process.

3.2.1 Frontal creation of vertices

In order to favor orthogonality or alignment of the final mesh, a frontal approach is used.
However, contrary to standard frontal approaches, we use a front of vertices instead of a front of
faces. From a practical point of view, the new points are proposed by vertices and not by faces.
In an anisotropic context, the new points depend only on the eigenvectors and eigenvalues of the
metric of the front point. Note that the directions depend on the orthogonal or aligned desired
pattern. These directions are illustrated in Fig. 3.3 in 2D. For all cases, we observe that the
direction aligned with the shortest size eigen direction is used. The frontal approach proposes
6 (2D) and 24 (3D) points are proposed, In the orthogonal approach, all directions are aligned
with the eigen vectors and 4 (2D) and 6 (3D) points are proposed. For simplicity we focus on
the orthogonal approach.

The initial front of points is given by the list of the surface points. Given a point xo and its
metricMo of the current front with eigenvectors (ui)i=1,3 and eigenvalues (λi)i=1,3, six points
are proposed:

xi = xo ± λ
− 1

2
i ui. (3.1)

When the metric is isotropic, we force the eigenvectors to be aligned with the natural axis of R3.
Note that these points are just a first guess and several additional checks are performed before
trying insertion. The first check consists in verifying that the new points are in the current
volume mesh by using a simple mesh localization algorithm. This check is also performed on
the background mesh. The background mesh localization also provides the metricMi of xi.

In order to take into account the variation of the metric, the final position of xi and metric
xi are updated. The procedure is based on a dichotomy along the segment [xo,xi] in order to

58 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

P

u1

u2

P

u1

u2

Figure 3.3 – Examples of the six directions for metric-aligned (left) and metric-orthogonal (right).

make sure that the Riemannian length evaluation of the vector [xoxi] is unit:∫ 1

0

√
t[xoxi]M(t) [xoxi] dt = 1,

whereM(t) is a geometric interpolation between metricsM(0) =Mo andM(1) =Mi. Note
that the original guess (3.1) only guarantees:

t[xoxi]Mo [xoxi] = 1.

Consequently, we seek for an optimal point xopt with back-mesh interpolated metricMopt lying
along the initial direction xoxi. Note that we need to iterate, because we interpolate the metric
from the background mesh. If Mopt were interpolated by Mo and Mi, an analytical formula
exists depending on the metric interpolation scheme used. This list of points is then filtered
in order to suppress from insertion points that are too close in the distance computed in the
metric. The filtering process (similar to the point filtering defined in Chapter 2) gives the list
of points to be inserted. This list of points defines the next front. This algorithm is applied
until the list of points to be inserted becomes empty. We mention that different procedures may
be used to generate the list of points to be inserted. In [Marcum 2014], the list is issued from
a front of faces instead of a front of points. In order to have an optimal ordering and to favor
alignments at smallest size, a heap list of composed of point/size/direction (Pi, hk,uk)ik is used.
The advancing point algorithm is summarized as :

1. Pop the first heap list entry, creates Pnew = Pi ± hk uk,

2. Update length/position of Pnew according to Riemannian metric field.

2. Metric-based length filtering, add Pnew for insertion,

3. Update the heap list with (Pnew, hk,uk)k,

4. If the heap list is not empty goto 2.

The points obtained for a half circle metric are depicted in Fig 3.4. The obtained mesh with
standard and metric-aligned are depicted in Fig. 3.5.

3.2. Metric-orthogonal and metric-aligned anisotropic mesh generation 59

Figure 3.4 – Illustration of the frontal point creation on a simple half-circle metric.

Standard Advancing-point

Figure 3.5 – Final unit mesh for the circle metric with the standard approach (left) and aligned
approach (right).

60 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

3.3 Numerical examples

The first example is a tailored mesh where isotropic source terms are used to generate an axes-
aligned mesh around and in the wake of an f117 aircraft. The aircraft has an angle of attack
of 20 degrees. The scope is to study the vortical flow generated by the delta shaped wing. For
this example, the use of locally structured grids is preferred as the smooth vortices interact
behind the aircraft. Reducing the solver diffusion is thus a key condition to observe the full
picture of the physical phenomenon. The flow solver is Wolf [14], and an unsteady inviscid
simulation is performed. The total CPU time is 12 hours on 8 cores of an i7 at 2.7Ghz. The
mesh composed of 7 532 632 vertices and 45 721 814 tetrahedra. The CPU time to generate
this mesh is 25 minutes. In Fig. 3.6 (middle left), we see how the fronts merge smoothly with
nothing but filtering as specific treatments. For the standard approach, the dihedral angles
follow a Gaussian distribution centered on the mean dihedral angle of the regular tetrahedron
whereas the distribution is centered around this mean value and the right angle value for the
metric-orthogonal approach, see Fig. 3.6 (bottom left).

If the previous example is isotropic, this approach can be used to generate anisotropic meshes
as well. We consider a transonic flow computation around a generic Falcon geometry at Mach 0.8

with an angle of attack of 3 degrees. We adapt the solution to the Mach number by controlling
the interpolation error in L2 norm [57], the final mesh is obtained after 30 iterations and is
composed of 1 110 735 vertices and 6 546 789 tetrahedra. The total CPU time is 40 minutes on
an Intel Core i7 laptop at 2.7Ghz. Local orthogonal features clearly appear in the wake, see
Fig. 3.8 (bottom left). For all meshes, more than 95% of the edges have a unit length in the
metric. A comparison with a standard mesh adaptation approach is given in Fig. 3.9 (left) where
dihedral angles are compared between the metric-orthogonal approach and the standard one.
For the metric-orthogonal approach, we see that more than 25% (resp. 5% for the standard
approach) of the elements contain right dihedral angles while minimizing the number of large
dihedral angles. The number of elements with small angles is also greater than in the standard
approach. This reveals that the level of anisotropy is even higher for the metric-orthogonal
approach.

We now consider the example of a dam break on a rectangular obstacle. In this simulation,
the compressible bi-fluid solver ANANAS c©[Ing.] is used. The error estimate is based on a
level-set metric in order to capture and predict accurately the interface between the water and
the air. The total CPU time for a physical time of 15s is 36h for the fully unstructured and
24h for the Cartesian approach. Both simulations were run on 4-cores of an Ivy-Bridge i7 at
3.4Ghz. We observe in Fig. 3.10 the dynamic of the flow. As the metric-orthogonal approach
tends to insert fewer points (especially in the transverse direction), the CPU time is lower than
the classical anisotropic approach. The distribution of the dihedral angles for the standard and
metric-orthogonal approach are reported in Fig. 3.9 (right) for time 0.85s. The histogram shows
that the angle distribution is centered around small angles and right angle whereas a uniform
distribution is observed for the standard approach. Some cuts in the volume mesh are reported
in Fig. 3.11 at different times. It shows how the mesh around the interface is locally structured
and how the edges are automatically aligned.

3.3. Numerical examples 61

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

5

10

15

20

25

dihedral angle distribution

%
 o

f e
le

m
en

ts

standard
metric−orthogonal

Figure 3.6 – Example of metric-orthogonal mesh generated from an analytical isotropic metric.
Different views of the 3D mesh (left) and iso-lines of the vortices generated by the f117 at different
times (right). Distribution of the dihedral angles with the standard and metric-orthogonal
approaches (bottom left).

62 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Figure 3.7 – Final adapted surface mesh on the falcon geometry (left) and density iso-values
(right).

Figure 3.8 – Cuts in the final adapted volume mesh showing the aligned anisotropic elements:
in the wake (top left), the vortex 100m behind the falcon (top right). Closer view in the red
rectangles of the wake (bottom left) and the vortex (bottom right)

3.4 Parallel large scale mesh adaptation

Parallel mesh generation has been an active field of research [Löhner 2013, Tremel 2007, Ito 2007,
Foteinos 2012]. Two main frames of parallelization exist: coarse-grained [Digonnet 2013, Lachat 2014,
Löhner 2013], and fine-grained [Foteinos 2012, Shephard 2013, Chernikov 2010, Özturan 1994].
Fine-grained parallelization requires to implement directly in parallel all the mesh modifica-
tion operators at the lowest level: insertion, collapse, swap ... This usually implies the use of
specific data structures to handle distributed dynamic meshes, especially for adaptive proce-

3.4. Parallel large scale mesh adaptation 63

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

5

10

15

20

25

30

dihedral angle distribution

%
 o

f e
le

m
en

ts

standard
metric−orthogonal

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

2

4

6

8

10

12

14

dihedral angle distribution

%
 o

f e
le

m
en

ts

standard
metric−orthogonal

Figure 3.9 – Comparison of the dihedral angle distribution of the standard anisotropic mesh
adaptation with the metric-orthogonal approach: falcon case (left) and dam break case (right).

dures [Alauzet 2006]. The second approach consists in the use of a bigger set of operators in
parallel. Most of the time a complete sequential mesh generator or mesh optimizer is used. Both
approaches have been also extended to adaptive frameworks, see [Digonnet 2013, Lachat 2014]
for the coarse-grained approach and [Shephard 2013] for the fine-grained. We follow the coarse-
grained parallelization in an adaptive context within the metric-based framework. In particular,
we address the following issues.

Surface-volume problematic. When considering the coarse-grained strategy, parallel mesh
generators or parallel local remeshers generally adapt either the surface or the volume mesh.
In [Alleaume 2008, Lachat 2014, Löhner 2013], the initial fine surface mesh is unchanged during
the parallel meshing process. If this consideration works well for uniform or isotropic meshes,
it turns out that it is mandatory to generate the volume and the surface meshes simultane-
ously when anisotropic meshes are considered. Indeed, the set of methods that have demon-
strated a good efficiency and reliability to mesh a given complex surface mesh: advancing front
method [Löhner 1988b, Mavriplis 1995], constraint global Delaunay [Baker 1987, George 1998,
George 1990] or a combination of both [Marcum 2001] are mostly susceptible to fail when an
anisotropic surface mesh is provided on input. The frontal methods generally do not succeed to
close the front, while the Delaunay-based methods will generally fail during the boundary recov-
ery phase. Consequently, being able to adapt the surface and the volume into a single thread is
necessary to gain in robustness [57]. However, adapting both the surface and the volume meshes
at the same time implies additional complexity for the load balancing as the costs of the volume
or surface operators differ.

Domain partitioning. Domain partitioning is a critical task as each partition should represent
an equal level of work [De Cougny 1999]. Graph-based techniques [Karypis 1998] tend to mini-
mize the size of the cuts to reduce the communication cost. However, this cost function is not
relevant for adaptative mesh generation, especially if the coarse-grained approach is used where
there is no communication at the interface during the remeshing step. For adaptive mesh genera-

64 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Figure 3.10 – Dam break simulation: cuts in the volume meshes for times 0.85s, 1s50, 2.50s,
and 7s50 (left) and representation of the interface water/air (right).

3.4. Parallel large scale mesh adaptation 65

Figure 3.11 – Dam break simulation: Close view in the volume meshes for time 0.85s, and 1s50

and 2.50s.

tion, the cost function (to define the cuts) is related to the amount of work (number of collapses,
insertions, optimization steps, . . .) needed on each partition. This becomes even more critical
for anisotropic mesh adaptation where refinements have a large variation in the computational
domain. Estimating accurately this work a priori is also challenging for anisotropic meshing as
it strongly depends on the properties of the serial meshing algorithm. Additional developments
of graph-based methods are then necessary to work in the anisotropic framework [Lachat 2014].
Domain partitioning also represents one of the main parallel overheads of the method. In par-
ticular, general purpose graph partitioners cannot take into account the different geometrical
properties of the sub-domains to be partitioned. Indeed, splitting the initial domain is completely
different from splitting the interface mesh, see Figs. 3.12 (top left and bottom left) and 3.13. In
addition, there exist additional requirements that the partitioning algorithm should ensure in
order to ease the work of the serial mesh generator. The first requirement is to ensure that the
parts are connected and the second requirement is to ensure that the number of non-manifold
(surface) edges is as minimal as possible.

Partition remeshing. This is the core component of the coarse-grained parallelization. The
overall efficiency of the approach is bounded by the limits of the sequential mesh generator. One
limit is the speed of the sequential remesher that defines the optimal potential speed in parallel.
In addition, as for the partitioning of interfaces, meshing a partition is different from meshing a
standard complete domain. Indeed, the boundary of the partition usually features non-manifold
components and constrained boundary faces. In particular, it is necessary to ensure that the
speed and robustness of the remesher is guaranteed on interface meshes. Consequently, when a
black-box mesher is used, achieving good performances in parallel may be difficult. Additional
developments and cares are usually needed in the serial meshing algorithm [Digonnet 2013]. In
addition, estimating the cost of the mesh modification operators of the serial meshing algorithm
is required to estimate the required work and to drive accordingly the partitioning algorithm.

66 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Out-of-core. Out-of-core meshing was originally designed to store the parts of the mesh that
were completed on disk to reduce the memory footprint [Alleaume 2008]. Despite the high
increase of memory (in terms of storage and speeds with solid state drives), coupling out-of-core
meshing with a parallel strategy may be advantageously used. On multi-socket shared memory
machines (with 40-200 cores), if the memory used by a thread is bigger than the memory of a
socket, then the memory exchange between neighboring sockets implies a huge overhead on the
sequential time (when running the procedure with one thread only). For instance, on a DELL
PowerEdge R900 with 4 Intel Xeon E7 sockets with 10-cores with 1 Tb of RAM, we observe that
the speed of the serial meshing algorithm is twice slower when the used memory exceeds 256 Gb,
i.e., the RAM of one socket. This drawback is even more critical on NUMA architectures.

Our procedure is based on standard coarse-grained parallel strategies [Lachat 2014, Löhner 1992,
Löhner 2013] where the initial domain is split into several sub-domains that are meshed in par-
allel. A sketch of the procedure is depicted in Fig. 3.12. Note that we can decompose the
procedure by level, where 3 levels are shown on the simple example of Fig. 3.12. At the first
level, the initial domain is split and considered for adaptation. From the set of constrained
faces (at interface) of the previous level, a new volume mesh (domain) is deduced for the next
level. This new domain is then split and adapted in parallel. This process is then applied until
convergence. We will show that a maximum of 5 levels is needed to complete the process.

To address the mesh partitioning issues, we define a hierarchical partitioning technique that
depends on the current level of the procedure. For the first level, a fast and parallel Hilbert
based partitioning is used while a breadth-first search with restart algorithm is used at the
next level. This allows us to take advantage of the geometry of the mesh at the interface
in order to minimize and reduce the number of constrained faces at each step. For each level,
specific partition corrections are designed to guarantee that each final partition is connected while
remaining well-balanced. To handle nonuniform refinements (in terms of sizes and directions),
a metric-based static load balancing formula is used to a priori equilibrate the work on each
sub-domain.

For the serial meshing algorithm, we use the unique anisotropic cavity-based operator, de-
scribed in Chapter 2, to perform the mesh adaptation . The main advantage is that we obtain a
constant speed whatever the considered operator. This feature allows us to derive an accurate
metric-based work that is easily deduced from the input metric-field and input mesh only.

Once the remeshing of a sub-domain is completed, two additional sub-domains are created.
The first one represents an interface mesh composed of elements that need additional refinement.
The second one is the completed part that is stored to disk. To define the interface mesh, mesh
modification operators (insertion/collapse) are emulated in order to enlarge the initial interface
mesh to perform a quality remeshing in the subsequent levels. Current state-of-art parallel mesh
generation approaches [Digonnet 2013] for unstructured (and adapted) meshes require thousands
of cores (4092-200 000 cores) to generate meshes with a billion elements. Our scope is to make
this size of mesh affordable on cheaper parallel architectures (≈120 cores) with an acceptable
runtime for an adaptive design process (less than 20 min).

3.5. Hierarchical Domain partitioning 67
Parallel process overview

Initial domain Mesh partitioning Parallel remeshing

Interface re-splitting Parallel remeshing Interface re-splitting

Victorien Menier

Level 1

Level 2

Level 3

remaining work completed work

Figure 3.12 – Sketch of the parallel process remeshing. The red-colored parts represent the part
of the domain that remains to be adapted while the gray-colored parts are the final adapted
parts that can be stored to disk. 3 levels are depicted.

3.5 Hierarchical Domain partitioning

In the context of parallel remeshing, the domain partitioning method must be fast, low memory,
able to handle domains with many connected components and effective to balance the remeshing
work. Moreover, we should have efficient partitioning method for several hierarchical level of
partitions. In particular, the method should be such that the size of the interface between
the partitions converges toward zero when the partitioning level increases in order to have a
converging parallel algorithm. More precisely, we first - level 1 - split the domain volume.
Level 2, we split the interface of the partitions of level 1; the interface volume domain being
formed by all the elements having at least one vertex sharing several sub-domains. Level 3, we
split the interface of the partitions of level 2, and so on. The different levels for the hierarchical
decomposition of a cubic domain into 32 partitions are shown in Fig. 3.13. In this example, we
observe that the domain topology varies drastically with the level. We also observe that the size
of interface meshes decreases at each level and converges toward zero.

To emphasize the choices made in this work for the hierarchical partitioning method, in this
section, we will always compare the proposed methodology on the same example. The considered
example is the adaptation of an initial uniform mesh to the numerical solution (at one time step)
of a spherical blast problem. We will refer to it as the blast example. The initial uniform mesh
is composed of 821 373 vertices and 4 767 431 tetrahedra while the adapted resulting mesh is
composed of 82 418 vertices and 511 998 tetrahedra. These two meshes are shown in Fig. 3.14.

68 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

It takes 36 seconds to generate that adapted mesh in serial.
This example is very interesting because the positions of the spherical shock waves imply

that a large number of insertions and collapses are needed while being non-uniformly distributed
in the domain. Hence, the amount of work and the kind of meshing operation varies drastically
in the domain.

3.5.1 Element work evaluation

An effective domain partitioning strategy should balance the work which is going to be done
by the local remesher on each partition, knowing that each partition is meshed independently.
Thus, there is no communication between partitions and the partition interfaces are constrained
(they are not remeshed). The work to be performed depends on the used mesh operations
(insertion, collapse, swap, smoothing), the given metric field (M(x))x∈Ω, and the initial mesh H
natural metric field (MH(x))x∈Ω, where Ω is the domain to be remeshed. Indeed, if the initial
mesh already satisfies the given metric, i.e., (MH(x))x∈Ω = (M(x))x∈Ω, then nothing has to
be done. It is convenient to define the work at the element level because it is the elements that
are uniquely distributed to each partition. We recall that the natural metric of an element K is
the unique metric tensorMK such that all edges of K are of length 1 forMK . It is obtained by
solving a simple linear system [11]. And, metric field (MH(x))x∈Ω is the union of the element
metricsMK .

To define the remesher work per element and the total work, we use a continuous approach
- similarly to the error estimate theory [11, 12] - because the initial mesh and the targeted final
adapted mesh are represented by their respective metric fields (MH(x))x∈Ω and (M(x))x∈Ω.
We recall that, for a given metric field (M(x))x∈Ω, also called continuous mesh, the point-wise
mesh density is given by dM(x) =

√
detM(x) and the continuous mesh complexity is

N =

∫
x∈Ω

√
detM(x) dx =

∫
x∈Ω

dM(x) dx .

Level 1 Level 2 Level 3 Level 4

Figure 3.13 – Hierarchical partitioning into 32 sub-domains of a cubic domain for a constant
work per element. From left to right, levels 1, 2, 3 and 4 of partitioning. We observe that the
domain topology varies drastically with the level, and the size of interface meshes decreases at
each level and converges toward zero.

3.5. Hierarchical Domain partitioning 69

Figure 3.14 – Blast example to assess the hierarchical partitioning techniques and anisotropic
work prediction: initial uniform mesh (left) and final adapted mesh (right). The serial adaptation
takes 36 seconds.

The continuous mesh complexity N is the dual of the mesh number of vertices N in the contin-
uous mesh framework [12]. As the work to be done by the local remesher is clearly proportional
to the mesh size, in the continuous approach, the work is thus proportional to the integral of
the mesh density.

We propose to define the work per element, the total work of the remesher being the sum of
the mesh element works. Each element K of initial mesh H is supplied with its natural metric
MK and the given metricM. The given metric at the element is obtained by averaging (in the
log-Euclidean framework) the metric at its vertices:

M = exp

(
k∑
i=1

1

k
ln(M(xi))

)
where the xi are the vertices of K ,

as the given metric field (M(x))x∈Ω is generally point-wise. We also compute the intersection
[Frey 2005] of these two metrics: M∩ = M∩MK . We denote by dM, dK and d∩ the density
of metric M, MK and M∩, respectively. Now, we analyze the work depending on specific
remeshing case and, then, we propose a work for the general case.

Insertion case. Assuming the initial mesh is only going to be refined (first case in Fig. 3.15),
the density of points to be inserted is dM\MK

then the work per element is

wrk(K) = α |K| (dM − dK) = α |K| (d∩ − dK) ,

where |K| is the element volume, α is the coefficient defining the cost of the insertion operator,
and in that case we have M∩ = M. Note that the metric density is inversely proportional
to the ellipse area in the graphic representation. If we assume that dM = d∩ � dK , then
wrk(K) ≈ α |K|dM. Thus, the total work will be:

wrk(H) =
∑
K∈H

α |K| dM = α

∫
x∈Ω

dM(x) dx = αN new ,

which is logical because in that case the work is effectively proportional to the size of the final
mesh. Let us give a concrete example in three dimensions. We have a uniform isotropic mesh of

70 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

size N with length size h thusMK = h−2 I3 for all elements K. We want to generate a mesh
at h/2, thus M = 4h−2 I3. This new mesh will have a size of 8N . The work per element is
wrk(K) = 7α |K|h−3 leading to a total work of wrk(H) = 7αN . This result is the expected
answer as 7N vertices will be inserted to generate the new mesh.

Collapse case. Assuming the initial mesh is only going to be collapsed (second case in Fig.
3.15), the density of points to be removed is dMK\M then the work per element is

wrk(K) = β |K| (dK − dM) = β |K| (d∩ − dM) ,

where β is the coefficient defining the cost of the collapse operator, and in that case we have
M∩ =MK . If we assume that dK = d∩ � dM, then wrk(K) ≈ β |K|dK . Thus, the total work
will be:

wrk(H) =
∑
K∈H

β |K| dK = β

∫
x∈Ω

dH(x) dx = αN ,

which is logical because in that case the work is effectively proportional to the size of the initial
mesh.

Optimization case. At the end of the remeshing process, an optimization phase is applied to
improve the mesh quality. Thus, the work due to the optimization is proportional to the size of
the final mesh:

wrk(K) = γ |K| dM ,

where γ is the coefficient defining the cost of the optimization operator.

General case. In the general case, we may have to insert and collapse locally because the
anisotropic information may be contradictory depending on the considered direction. For in-
stance, two metrics may have the same density but opposite directions hence in one direction
we should refine the mesh and in the other direction we should coarsen the mesh (third case in
Fig. 3.15). The general case gathers all the previous cases and the density of the intersected
metric represents the common ground. The work per element is:

wrk(K) = |K| (α (d∩ − dK) + β (d∩ − dM) + γ dM) .

The constants depend on the underlying remesher properties. In our case, the local remeshing
strategy uses a unique cavity operator for all mesh modifications (see Chapter 2), therefore all
mesh modifications have exactly the same cost. We thus set: α = β = γ = 1, the work per
element becomes:

wrk(K) = |K| (2 d∩ − dK − dM + dM) , (3.2)

or if no optimization step is performed γ = 0, thus:

wrk(K) = |K| (2 d∩ − dK − dM) .

If we are in the case where only refinements are performed, at a first order approximation,
we can assume that dM = d∩ � dK and the work per element is:

wrk(K) ≈ |K| (2 d∩ + (γ − 1)dM) = |K| (1 + γ) dM .

3.5. Hierarchical Domain partitioning 71

MK

M

M\ = M \ MK M\MKMK\M
Only insertion

MK

M

Only collapse

M

MK

General case

Figure 3.15 – Illustration of the continuous work in the metric-based framework. Blue regions
represent insertion work. Red regions represent collapse work. Note that the metric density d
is inversely proportional to the ellipse area in the graphic representation.

This means that the work without optimization is proportional to the work with optimization.
In that case, it changes nothing to take into account the work due to the optimization to define
the work per element.
If we are in a case where only collapses is performed, at a first order approximation, we can
assume that dK = d∩ � dM, thus the element work is:

wrk(K) ≈ |K| (2 d∩ − dK) = |K| dK .

Thus, the work without optimization is equal to the work with optimization and it changes
nothing to take into account the work due to the optimization to define the work per element.
This simple analysis shows why it is very important to choose a simple example that involves
the general case (and not only coarsening or refinement) to validate the obtained work function.
Indeed, in the general case, it is primordial to take into account the cost of the mesh optimization
to have well-balanced partitions. This is why the blast example has been chosen.

Surface work. When the surface is remeshed with the volume, the work to remesh the surface
is added to the work to remesh the volume. Therefore, the same formula is used to estimate the
work per face by taking into account the surface metric and the surface density. Then, the work
of each face is added to the work of the element sharing that face.

Blast example. We first illustrate on the blast example why it is crucial to take into account
the metric of the initial mesh and the given metric to define the remesher work (as we have done
in this section), and not to use - as frequently observed - only the given metric (which is valid
if only insertion is done, see previous remark). The results obtained on 8 processors with the
anisotropic work given by Relation (3.2) and the work only based on the density of the given
metric M are given in Table 3.1. In both cases, the Hilbert partitioning method is used. The
anisotropic work leads to a quasi-uniform CPU time for each of the 8 partitions whatever the
number of collapses or insertions. On the contrary, considering only the given metric density
to compute the work to balance the partitions leads to a completely non-uniform CPU time.
In fact, we have balanced the number of insertions on each partition (≈ 8, 600 per partitions)
which is expected if only dM is used. But, the collapses have not been taken into account. It

72 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

results in a larger maximal time and a large overhead in waiting for the end of the remeshing of
the most time-consuming partition.

Anisotropic work Statistics for each partition Waiting time

Cpu time (sec) 5.1 4.8 4.7 4.6 4.6 4.7 4.6 4.6 0.5

of collapses 78 844 95 615 96 457 81 437 91 787 85 754 96 020 83 763

of insertions 14 029 4 952 4 299 12 667 7 121 10 058 4 586 11 103

Density-based work Statistics for each partition Waiting time

Cpu time (sec) 3.9 4.2 6.7 2.4 7.0 0.9 9.6 3.4 8.7

of collapses 63 047 73 404 133 349 33 764 138 473 2 801 205 677 59 218

of insertions 8 626 8 530 8 526 8 614 8 605 8 604 8 585 8 598

Table 3.1 – Remeshing statistics on 8 processors for the blast problem test case (Fig. 3.14).
The total CPU time, the number of collapses and the number of insertions for each partition
are presented. Top and bottom tables show the statistics for a mesh partitioning based on the
anisotropic work (Relation (3.2)) and on the given metric density-based work, respectively. In
both cases, the Hilbert partitioning method is used.

3.5.2 Partitioning methods

Before using any of the partitioning methods presented below, the mesh vertices are first renum-
bered using a Hilbert space filling curve based reordering [59]. A Hilbert index (the position on
the curve) is associated with each vertex according to its position in space. This operation has
a linear complexity and is straightforward to parallelize as there is no dependency. Then, the
vertices renumbering is deduced from the vertices Hilbert indices. Vertices are sorted using the
standard C-library quicksort.

The domain partitioning problem can be viewed as a renumbering problem of the elements.
In that case, the first partition is composed of the elements from 1 to N1 such that the sum of
these elements work is equal to the total mesh work divided by the total number of partitions.
Then, the second partition is composed of the elements from N1+1 to N2 such that that the sum
of these elements work is equal to the total mesh work divided by the total number of partitions.
And so on. The difference between all strategies lies on the choice of the renumbering strategy.
Note that, for efficiency purposes, the elements are not explicitly reordered but they are only
assigned an index or a partition index on the fly.

Now, assuming the vertices have been renumbered, we propose three methods to split the
mesh: Hilbert based, breadth-first search (BFS) or frontal approach, and BFS with restart.

Hilbert partitioning. It consists in ordering the elements list according to the element minimal
vertex index. In other words, we first list the elements sharing vertex 1 (the ball of vertex 1), then
we list the elements sharing vertex 2 (the ball of vertex 2 not already assigned), etc. This splitting
of the domain is based on the Hilbert renumbering of the vertices. For level 1 domain (initial
domain splitting), it results in block-shaped partitions which is very convenient for subdomain
remeshing (see Fig. 3.16 (c)). But, it may lead to partitions with several connected components
on complex geometry due to domain holes not seen by the Hilbert curve. For level 2 or more

3.5. Hierarchical Domain partitioning 73

domains, it is not effective because it will reproduce the previous level result and thus it will not
gather the interfaces of different sub-domains. The size of the interface mesh will not decrease
at each level.

Breadth-first search (BFS) partitioning. This method starts from an element seed - gener-
ally, element 1 - and adds the neighbor elements of the seed first, i.e., the neighbors are the next
elements in the renumbered list. Then, we move to the next level of neighbors, in other words,
we add the neighbors of the neighbors not already assigned. And so on. This splitting of the
domain progresses by front. Indeed, each time an element is assigned, its non-assigned neighbors
are added to a stack. The elements in this stack represent the current front. For level 1 domain,
it results in layered partitions which contains only one connected component (see Fig. 3.16 (a))
except the last one(s) which could be multi-connected. But, it results in several unconnected
interface domains at level 2 which is not appropriate here. For level 2 or more domains, this
method is able to gather the interfaces of different sub-domains but, as the stack is always grow-
ing, the number of connected components grows each time a bifurcation is encountered (see Fig.
3.17 (a)). This leads to very unbalanced sub-domains after the connected component correction
presented below. Therefore, we prefer to consider the modified BFS method described hereafter.

Breadth-first search (BFS) with restart partitioning. In the previous BFS algorithm, the
splitting progresses by front, and generally this front grows until it reaches the diameter of the
domain. During the splitting of interface domains (level 2 or more), this is problematic because
the resulting partitions are multi-connected, cf. Fig. 3.17 (a). One easy way to solve this issue
is to reset the stack each time we deal with a new partition. The seed of the new partition
is the first element of the present stack, all the other elements are removed from the stack.
For level 1 domain, it results in more circular (spherical) partitions (see Fig. 3.16 (b)). For
level 2 or more domains, this method is able to gather the interfaces of different sub-domains
and also to obtain one connected component for each partition except the last one(s), see Fig.
3.17 (c). Therefore, this method is very efficient to deal with the level 2 or higher domains of
the hierarchical partitioning. Moreover, we observe in Fig. 3.13 that the size of the partition
interface meshes reduces at each level.

Connected components correction. As the interface are constrained and not remeshed, the
number of connected components per subdomain should be minimized to maximize the work
done by the remeshing strategy. In other words, each partition should have only one connected
component if possible. All elements of the same connected component are linked by at least a
neighboring face.

After the domain splitting, a correction is applied to merge isolated connected components,
see Fig. 3.16 (e). First, for each subdomain, the number of connected components is computed
and the primary connected component (the one with the most work) of each partition is flagged.
Second, we compute the neighboring connected components of each non-primary connected com-
ponent. Then, iteratively, we merge each non-primary connected component with a neighboring
primary connected component. If several choices occur, we pick the primary connected compo-
nent with the smallest work. The impact of this correction is illustrated in Fig. 3.16 from (e)
to (c).

We may end up with non-manifold (but connected) partitions, i.e., elements are linked by a

74 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

(a) (b) (c) (d) (e)

Figure 3.16 – Partitioning into 16 sub-domains of a - level 1 - rectangular domain for a constant
work per element with the BFS (a), BFS with restart (b) and Hilbert (c) methods. Picture (d)
shows the Hilbert partitioning with a linear work function (the work per element increase with
y) which has to be compared with picture (c) for a constant work per element. Picture (e) shows
the Hilbert partitioning before the connected components correction.

vertex or an edge. As the local remeshing strategy is able to take care of such configurations,
no correction is applied. Otherwise, such configurations should be detected and corrected.

Blast example. We compare, on the blast example, the efficiency of the proposed partitioning
methods on the level 1 and level 2 meshes.

For the level 1 partitioning, we first analyze the size of the interface provided by each method.
Indeed, the best method should minimize the number of interface faces as these faces are con-
strained and prevent the remesher to work. The result is given in Table 3.2. Clearly, the Hilbert
method minimizes the number of interface faces (by a factor two w.r.t. the BFS method), and
it also somehow balances the number of interface faces between the partitions. This should have
an impact on the efficiency. Second, we analyze the CPU time and the number of operations
done with each method, the result is presented in Table 3.3. The Hilbert method achieves the

Method Number of interface faces for level 1 partitions Total Max difference

Hilbert 18 043 19 408 21 870 16 849 19 580 19 268 22 256 16 270 153 542 5 986

BFS 14 550 34 115 41 550 45 883 50 885 56 579 47 350 17 758 308 670 42 029

BFS restart 14 532 26 615 23 710 11 344 37 407 33 773 30 290 23 683 201 334 26 063

Table 3.2 – Interface size between level 1 partitions on 8 processors for the blast problem test
case (FIg. 3.14): the number of interface faces - which are constrained faces for the remesher -
for each level 1 partition are given. The three partitioning methods are compared.

3.5. Hierarchical Domain partitioning 75

lowest maximal CPU time and minimizes the waiting time between the partitions. It leads to
a quasi-uniform CPU times for each of the 8 partitions whatever the number of collapses or

(a) (b) (c) (d)

Figure 3.17 – Partitioning into 16 sub-domains of a - level 2 - interface mesh of a rectangular
domain for a constant work per element. The interface mesh results from the Hilbert partitioning
of the level 1 domain. Partitions obtained with the BFS method before and after correction are
shown in pictures (a) and (b), respectively. Partitions obtained with the BFS method before
and after correction are shown in pictures (c) and (d), respectively.

Hilbert method Statistics for each level 1 partition Waiting time

Cpu time (sec) 5.1 4.8 4.7 4.6 4.6 4.7 4.6 4.6 0.5

of collapses 78 844 95 615 96 457 81 437 91 787 85 754 96 020 83 763

of insertions 14 029 4 952 4 299 12 667 7 121 10 058 4 586 11 103

BFS method Statistics for each level 1 partition Waiting time

Cpu time (sec) 4.6 5.0 5.1 5.4 5.9 5.9 5.5 4.8 1.3

of collapses 106 496 100 976 50 380 42 465 73 217 98 160 97 906 102 908

of insertions 1 582 25 726 29 666 12 360 0 0 1

BFS restart method Statistics for each level 1 partition Waiting time

Cpu time (sec) 5.2 5.5 5.4 4.6 5.3 5.0 5.4 4.8 0.9

of collapses 106 508 103 028 93 868 3 702 92 508 103 594 101 370 94 954

of insertions 3 515 5 474 54 978 7 331 1 0 0

Table 3.3 – Remeshing statistics on 8 processors for the blast problem test case (Fig. 3.14) on
the level 1 mesh. The total CPU time, the number of collapses and the number of insertions for
each partition are presented. From top to bottom, tables show the statistics for the Hilbert, the
BFS, and the BFS with restart methods.

76 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

insertions.

Now, we analyze the results for the level 2 partitioning where the level 1 partitioning has
been done with the Hilbert method. The size of the interface provided by each method is given
in Table 3.4. As previously mentioned, the Hilbert method does not reduce the interface on the
subsequent level and it is thus not appropriate. We notice that the BFS with restart is clearly
better than the BFS, and the number of interface faces drop from 153 542 on the level 1 to 25 682

on the level 2. As regards the efficiency, the BFS with restart achieves the best CPU time and
minimize the waiting time, see Table 3.5.

The following strategy is thus proposed for the hierarchical mesh partitioning. The Hilbert
method is used to partition the initial volume mesh, i.e., the level 1 partitioning, as it is very
efficient, it ends-up with well-balanced partitions, and it minimizes the size of the interface.
Moreover, the Hilbert partitioning of the initial volume mesh provides a nice continuous network-
shaped domain (see Figs. 3.13 and 3.16) for the interface mesh which is very convenient for the
subsequent partitioning levels.

Method Number of interface faces for level 2 partitions Total Max difference

Hilbert 18 934 21 583 22 378 16 956 19 843 19 766 23 040 16 300 158 794 6 084

BFS 3 013 5 476 6 129 8 422 9 492 8 563 4 737 910 46 742 8 582

BFS restart 3 002 4 585 5 288 5 602 2 036 1 390 1 408 2 373 25 682 4 212

Table 3.4 – Interface size between level 2 partitions on 8 processors for the blast problem test
case (Fig. 3.14): the number of interface faces - which are constraint faces for the remesher -
for each level 1 partition are given. The three partitioning methods are compared.

Hilbert method Statistics for each level 2 partition Waiting time

Cpu time (sec) 0.97 0.96 0.95 0.90 0.88 0.94 0.99 0.90 0.11

of collapses 0 264 47 84 16 8 118 27

of insertions 2 488 1,617 1 789 2 335 2 000 2 117 1 506 2 145

BFS method Statistics for each level 2 partition Waiting time

Cpu time (sec) 0.44 0.54 0.60 0.67 0.70 0.68 0.71 0.41 0.30

of collapses 10 074 5 817 1 860 1 568 1 659 1 357 5 026 0

of insertions 0 852 2 516 2 356 2 281 2 466 2 801 2 529

BFS restart method Statistics for each level 2 partition Waiting time

Cpu time (sec) 0.47 0.57 0.54 0.51 0.55 0.52 0.53 0.53 0.10

of collapses 10 074 6 122 4 763 9 160 603 2 0 76

of insertions 0 876 1 398 17 3 099 3 616 3 950 3 100

Table 3.5 – Remeshing statistics on 8 processors for the blast problem test case (Fig. 3.14) on
the level 2 mesh. The total CPU time, the number of collapses and the number of insertions for
each partition are presented. From top to bottom, tables show the statistics for the Hilbert, the
BFS, and the BFS with restart methods.

3.5. Hierarchical Domain partitioning 77

3.5.3 Partitions balancing optimization by migration

On some complex configurations, the connected components correction leads to unbalanced
partitions because the size of the non-primary connected components is non-negligible. The
partition balancing is then optimized by migrating elements between neighboring partitions. To
this end, each element is analyzed and if it has a neighboring element on another partition which
has a lower total work, then these elements are migrated to that partition. This optimization
phase improves the partitions balancing but may create new connected components for parti-
tions, thus the correction presented in the previous section is again applied. This process is
iterated until the partitions are well-balanced with respect to the given work.

3.5.4 Efficiency of the method

The presented domain partitioning methods minimize the memory requirement as the data struc-
tures they use are only: the elements list, the elements’ neighbors list, the elements’ partitions
indices list and a stack. They are efficient in CPU because the elements assignment to a subdo-
main is done in one loop over the elements. Then, the connected components correction requires
only a few loops over the partitions. For instance, let us consider the domain partitioning of a
cubic domain composed of 10 million tetrahedra into 64 sub-domains. In serial on a Intel Core
i7 at 2.7Ghz, it takes 0.52, 0.24 and 0.24 seconds for the partitioning of the level 1, 2 and 3
domains, respectively, where the Hilbert partitioning has been used for level 1 domain and the
BFS with restart partitioning has been used for the level 2 and 3 domains.

3.5.5 Definition of the interface mesh

During the remeshing phase, the set of elements that surrounds the constrained faces (defining
the boundary of the current partition) is not adapted. It is then necessary to define a set of
elements that needs to be adapted at the next iteration (or level). An initial choice consists in
introducing all the elements having at least one node on the boundary of the interface. This
choice is illustrated in Fig. 3.18 (middle). Despite its simplicity, this choice is appropriate only
when the size of the elements of the interface is of the same order as the size imposed elsewhere.
However, when large size variation occurs, additional elements need to be part of the new
interface volume. Optimally, a sufficient number of elements needs to be added to make sure that
underlying local modification will be possible at the next level. An automatic way to find these
elements is to add the relevant set of elements of the cavity [45] for each operator. Two situations
occur. When an edge of the interface is too short, a collapse will be needed at the next level.
Consequently, for all interfaces sharing this edge, the ball of the two end-points edges is added.
When an edge is too long, a point will be inserted at the next level, consequently, the Delaunay
cavity of the mid-point edge is added. Note that these modifications are done in parallel at the
end of the remeshing step, thus limiting the overhead of this correction. The modification of the
set of elements defining the interface is illustrated in Fig. 3.18 where a cubic domain is refined
from a size h to h/4. If we select only the balls of the interface vertices, then the remeshing
process is much more constrained, see Fig. 3.18 (middle). Including additional elements based
on the cavity defining the relevant mesh modification operator (collapse or insertion) gives
additional room to the mesh generator to perform a quality modification, Fig. 3.18 (right).

78 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Interface No correction Cavity-based correction

Figure 3.18 – Definition of the interface mesh on a cube example. Global view of interface
geometry (left), interface defined by the balls of the vertices belonging to the interface (middle),
and interface mesh defined by predicting the set of elements needed to perform the remeshing
operation (insertion or collapse).

3.6 Numerical Results

Several examples are illustrated in this section. For each case, the parallel mesh generation
converges in 5 iterations. The number of cores is chosen to ensure that at least 100 000 tetrahedra
per core will be inserted. Consequently, the number of cores is reduced when the remaining
work decreases. All the examples are run on a cluster composed of 40 nodes with 48Gb of
memory, composed of two-chip Intel Xeon X56650 with 12 cores. A high-speed internal network
InfiniBand (40Gb/s) connects these nodes. For each example, we report the complete CPU time
including the IOs, the initial partitioning and gathering along with the parallel remeshing time.
To evaluate the overheads and efficiency of the parallel method, serial meshes are generated on
a super-node having 1 Tb of memory.

Vortical flows on the F117 geometry. This case is part of an unsteady adaptive simulation
to accurately capture vortices generated by the delta-shaped wings of the F117 geometry, see
Fig. 3.19. The final adapted mesh of the simulation is depicted in Fig. 3.19. The final adapted
mesh is composed of 83 752 358 vertices, 539 658 triangles and 520 073 940 tetrahedra. The initial
background mesh is composed of 1 619 947 vertices, 45740 triangles and 9 710 771 tetrahedra.
The complete CPU time (including initial domain partitioning and final gathering) is 12 min on
120 cores. The parallel mesh adaptation of the process takes 8 min 50 s. The parallel procedure
inserts 106 vertices/min or equivalently 6 . 106 tetrahedra/min, see Table 3.7. The maximal
memory used per core is 1.25 Gb. The same example on 480 cores is reported in Table 3.8, the
CPU for the parallel mesh generation part is 3 min 36 s while the maximal memory used per
core is 0.6Gb. The speed up from 120 to 480 cores is limited to 1.5 (4 optimally), this is due to
the large increase of the interfaces in the mesh, see Table 3.9 (left). For a partition, the typical
time to create its interface mesh using the anisotropic Delaunay cavity is less than 10% of the
meshing time.

The quality of the mesh along with the histogram of the length of edges is reported in

3.6. Numerical Results 79

Figure 3.19 – F117 test case. From left to right, geometry of the f117 aircraft, representation
of the vortical flow, top view of the mesh adapted to the local Mach number and local Mach
number iso-values.

Table 3.6. More than 94% of edges have a unit length w.r.t. the metric. The serial CPU time
for this case is 4h with an equivalent distribution of lengths and qualities. The mesh generated
in serial is composed of 81 920 668 vertices, 510 052 triangles and 493 948 440 tetrahedra. For
the complete process, we obtain a speed-up of 20 on 120 cores.

Blast simulation on the tower bridge. The example consists in computing a blast propa-
gation on the London Tower Bridge. The geometry is the 23rd IMR meshing contest geometry.
The initial mesh is composed of 3 837 269 vertices 477 852 triangles and 22 782 603 tetrahedra
while the final mesh is composed of 174 628 779 vertices 4 860 384 triangles and 1 090 324 952

tetrahedra. From the previous example, the surface geometry and mesh adaptation is much
more complex as many shock waves impact the bridge. The time to generate the adapted mesh
on 120 cores is 22 min 30 s and 28 min for the total CPU time including the initial splitting,
final gathering and IOs. On 480 cores, the time to generate the mesh reduces to 16 min 30 s.
The maximal memory used on 120 cores is 1.8Gb and reduces to 1Gb on 480 cores. We report
in Tables 3.9 (right), 3.10 and 3.11, the convergence of the process. This example exemplifies
the robustness of this approach with complex geometries.

The quality of the mesh along with the histogram of the length of edges is reported in
Table 3.12. As for as the F117 test case, more than 94% of edges have a unit length in the
metric. The serial CPU time for this case is 10 h 40 min with an equivalent distribution of
length and qualities. The mesh generated in serial is composed of 183 761 201 vertices, 4 572 302

triangles and 1 102 880 450 tetrahedra. For the complete process, we obtain a speed-up of 30 on
120 cores. In comparison with the F117 test case, the improvement of the speed-up is related
to the serial approach that tends to be less efficient when the size of the meshes increases. The
use of the parallel out-of-core approach tends to minimize this memory effect as the complete
mesh is never stored on memory.

Landing gear geometry mesh refinement. This geometry is designed for the study of the
propagation of the noise generated by a landing gear. This simulation requires large isotropic
surface and volume meshes to capture the complex flow field which is used for aeroacoustic
analysis. The initial background mesh is composed of 2 658 753 vertices 844 768 triangles and
14 731 068 tetrahedra while the adapted mesh is composed of 184 608 096 vertices 14 431 356

80 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Distribution of `M for edges

0.00 < `M < 0.20 24 815 0.00 %
0.20 < `M < 0.50 555 487 0.09 %
0.50 < `M < 0.71 2 577 068 0.41 %
0.71 < `M < 0.90 181 600 710 28.63 %
0.90 < `M < 1.11 224 256 106 35.35 %
1.11 < `M < 1.41 195 459 095 30.81 %
1.41 < `M < 2.00 25 649 625 4.04 %
2.00 < `M < 5.00 4 141 743 0.65 %
5.00 < `M 68 602 0.01 %

Distribution of QM for triangles

1 < QM < 2 495 271 99.45 %
2 < QM < 3 1 557 0.31 %
3 < QM < 4 535 0.11 %
4 < QM < 5 299 0.06 %
5 < QM < 6 152 0.03 %
6 < QM < 7 73 0.01 %
7 < QM < 8 55 0.01 %
8 < QM < 9 24 0.00 %
9 < QM < 10 11 0.00 %

10 < QM < 100 39 0.01 %

Distribution of QM for tetrahedra

1 < QM < 2 467 446 828 94.15%
2 < QM < 3 14 064 980 2.83%
3 < QM < 4 4 054 558 0.82%
4 < QM < 5 2 333 665 0.47%
5 < QM < 6 1 556 518 0.31%
6 < QM < 7 1 118 945 0.23%
7 < QM < 8 842 774 0.17%
8 < QM < 9 657 686 0.13%
9 < QM < 10 524 793 0.11%

10 < QM < 100 3 773 750 0.76%
100 < QM < 1000 130 948 0.03%

1000 < QM < 10000 2 256 0.00 %

Table 3.6 – F117 test case on 120 cores: Distribution of the length of edges in the metric,
histograms of the quality of surface and volume elements in the metric.

Iteration % done # in interface # inserted CPU time # of cores elt/sec elt/sec/core

1 84% 69 195 431 433 495 495 180.8 120 2.4 106 19 980

2 96% 1 692 739 502 706 732 95.0 120 7.2 105 6 071

3 99% 1 231 868 518 850 149 35.9 91 4.6 105 5 068

4 99% 6459 520 067 586 7.5 7 1.6 105 2 318

5 100% 0 520 073 940 1.7 1 3.7 103 3 737

Table 3.7 – F117 test case on 120 cores. Table gathering the number of tetrahedra in the
interface and the number of inserted tetrahedra along with the CPU time in second for each
iteration.

3.6. Numerical Results 81

Iteration % done # in interface # inserted CPU time # of cores elt/sec elt/sec/core

1 76% 109 269 782 389 476 861 109.9 480 3.5 106 7 383

2 91% 42 836 303 486 695 293 67.0 480 1.4 106 1 440

3 98% 5 567 744 525 073 846 28.1 228 1.3 106 6 011

4 99% 32292 530 573 260 8.9 30 6.1 105 20 597

5 100% 0 530 605 308 2.3 1 1.4 104 13 933

Table 3.8 – F117 test case on 480 cores. Table gathering the number of tetrahedra in the interface
and the number of inserted tetrahedra along with the CPU time in second for each iteration.

Iteration 120 cores 480 cores

1 590 038 954 166

2 1 711 512 4 306 256

3 130 262 589 532

4 869 4 018

5 0 0

Iteration 120 cores 480 cores

1 1 081 246 1 627 846

2 2 416 840 5 265 939

3 132 659 451 355

4 488 3 230

5 0 0

Table 3.9 – Number of faces at the interfaces at each iteration when running on 120 and 480
cores for the F117 (left) and the tower bridge (right) test cases.

Iteration % done # in interface # inserted CPU time # of cores elt/sec elt/sec/core

1 84% 89 577 773 919 345 377 577.3 120 1.5 106 13 277

2 95% 14 290 245 1 062 994 802 280.7 120 5.1 105 4 264

3 97% 1 290 855 1 089 035 610 56.3 120 4.6 105 3 854

4 97% 3636 1 090 321 352 8.0 7 1.6 105 22 959

5 100 % 0 1 090 324 952 2.1 1 1.7 103 1 714

Table 3.10 – Tower-bridge test case on 120 cores. Table gathering the number of tetrahedra in
the interface and the number of inserted tetrahedra along with the CPU time in second for each
iteration.

Iteration % done # in interface # inserted CPU time # of cores elt/sec elt/sec/core

1 79% 193 529 057 922 145 088 255.8 480 3.6 106 7 510

2 93 % 52 837 674 1 115 428 211 106.7 379 1.8 106 4 779

3 96% 4 258 411 1 165 096 167 34.6 282 1.4 106 5 090

4 97% 27 095 1 169 283 585 23.0 23 1.8 105 7 915

5 100% 0 1 169 310 260 3.9 1 6.8 103 6 839

Table 3.11 – Tower-bridge test case on 480 cores. Table gathering the number of tetrahedra in
the interface and the number of inserted tetrahedra along with the CPU time in second for each
iteration.

82 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Distribution of `M for edges

0.00 < `M < 0.20 120 421 0.01 %
0.20 < `M < 0.50 1 489 489 0.11 %
0.50 < `M < 0.71 5 406 707 0.38 %
0.71 < `M < 0.90 394 284 285 27.80 %
0.90 < `M < 1.11 496 597 258 35.02 %
1.11 < `M < 1.41 444 060 651 31.31 %
1.41 < `M < 2.00 66 636 395 4.70 %
2.00 < `M < 5.00 9 496 734 0.67 %
5. < `M 110 093 0.01 %

Distribution of QM for triangles

1 < QM < 2 4 519 374 98.95 %
2 < QM < 3 19 900 0.44 %
3 < QM < 4 7 661 0.17 %
4 < QM < 5 4 693 0.10 %
5 < QM < 6 3 209 0.07 %
6 < QM < 7 2 169 0.05 %
7 < QM < 8 1 648 0.04 %
8 < QM < 9 1 276 0.03 %
9 < QM < 10 976 0.02 %

10 < QM < 100 6 352 0.14 %
100 < QM < 1000 48 0.00 %

Distribution of QM for tetrahedra

1 < QM < 2 1 040 413 376 93.86 %
2 < QM < 3 32 540 901 2.94 %
3 < QM < 4 9 077 486 0.82 %
4 < QM < 5 5 316 550 0.48 %
5 < QM < 6 3 618 423 0.33 %
6 < QM < 7 2 643 492 0.24 %
7 < QM < 8 2 021 664 0.18 %
8 < QM < 9 1 597 095 0.14 %
9 < QM < 10 1 294 143 0.12 %

10 < QM < 100 9 691 925 0.87 %
100 < QM < 1000 297 559 0.03 %

1000 < QM < 10000 2 950 0.00 %

Table 3.12 – Tower bridge test case on 120 cores: Distribution of the length of edges in the
metric, histograms of the quality of surface and volume elements in the metric.

Figure 3.20 – Tower-bridge test case. Initial mesh and geometry (left) and density iso-values of
the the blast on an adapted mesh (right).

3.7. Conclusion 83

Figure 3.21 – Landing gear test case. Geometry of the landing gear (left) and closer view of the
surface mesh around some geometrical details (middle and right).

Iteration % done # in interface # inserted CPU time # of cores elt/sec elt/sec/core

1 84 % 89 718 245 1 009 783 723 487.5 120 2.0 106 17 261

2 91 % 16 368 313 1 107 015 758 126.7 120 7.6 105 6 395

3 92 % 645 035 1 122 857 778 36.6 87 4.3 105 4 975

4 97% 2 351 1 123 488 597 5.6 4 1.1 105 28 161

5 100% 0 1 123 490 929 1.7 1 1.3 103 1 371

Table 3.13 – Landing gear test case on 120 cores. Table gathering the number of tetrahedra in
the interface and the number of inserted tetrahedra along with the CPU time in second for each
iteration.

triangles and 1 123 490 929 tetrahedra. The parallel remeshing time is 15 min 18 s and the total
CPU time is 24 min 57 s (including the initial splitting and the final gathering). This example
illustrates the stability of this strategy when the surface mesh contains most of the refinements.
Indeed, the surface mesh is composed of more than 7.2 million vertices and 14.4 million triangles.
Table 3.13 gathers all the data per iteration on this case. The geometry and closer view on the
surface mesh are depicted in Fig. 3.21.

The quality of the mesh along with the histogram of the length of edges is reported in
Table 3.14. More than 95% of edges have a unit length in the metric. The serial CPU time
for this case is 14 h 5 min with an equivalent distribution of lengths and qualities. The mesh
generated in serial is composed of 182 103 059 vertices, 14 348 710 triangles and 1 077 433 606

tetrahedra. For the complete process, we obtain a speed-up of 33 on 120 cores.

3.7 Conclusion

We have proposed a strategy to generate metric-orthogonal anisotropic meshes. It is an extension
of classical anisotropic mesh adaptation. In addition to being unit with respect to a metric,
metric-orthogonal meshes are composed of elements that are aligned with the eigenvectors. This
allows to recover locally structured meshes while keeping the same level of anisotropy. Dihedral
angles are also optimized: the distributions are concentrated around small angles (needed for

84 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Distribution of `M for edges

0.00 < `M < 0.20 5 1384 0.00 %
0.20 < `M < 0.50 71 7381 0.05 %
0.50 < `M < 0.71 3 156 440 0.23 %
0.71 < `M < 0.90 395 251 255 28.25 %
0.90 < `M < 1.11 507 393 290 36.27 %
1.11 < `M < 1.41 435 996 200 31.16 %
1.41 < `M < 2.00 49 278 188 3.52 %
2.00 < `M < 5.00 7 153 341 0.51 %
5.00 < `M 38 377 0.00 %

Distribution of QM for triangles

1 < QM < 2 14173311 99.37 %
2 < QM < 3 41197 0.29 %
3 < QM < 4 22200 0.16 %
4 < QM < 5 14378 0.10 %
5 < QM < 6 7188 0.05 %
6 < QM < 7 2839 0.02 %
7 < QM < 8 1364 0.01 %
8 < QM < 9 649 0.00 %
9 < QM < 10 257 0.00 %

10 < QM < 100 349 0.00 %

Distribution of QM for tetrahedra

1 < QM < 2 1 032 582 415 95.46 %
2 < QM < 3 23 777 126 2.20 %
3 < QM < 4 6 604 689 0.61 %
4 < QM < 5 3 973 735 0.37 %
5 < QM < 6 2 736 791 0.25 %
6 < QM < 7 2 010 912 0.19 %
7 < QM < 8 1 540 367 0.14 %
8 < QM < 9 1 208 878 0.11 %
9 < QM < 10 966 202 0.09 %

10 < QM < 100 6 281 111 0.58 %
100 < QM < 1000 51 584 0.00 %

1000 < QM < 10000 43 0.00 %

Table 3.14 – Landing gear test case on 120 cores: Distribution of the length of edges in the
metric, histograms of the quality of surface and volume elements in the metric.

3.7. Conclusion 85

anisotropy) and right angles. The procedure is based on a combination of cavity-based operators
with an advancing-point frontal algorithm to generate an optimal distribution of points.

The effectiveness of the method strongly depends on the quality and the properties of the
input metric. Consequently, the current work is directed at improving usual anisotropic metric
to comply with this metric-orthogonal and metric-aligned kernels. In particular, size and ori-
entation smoothing should be performed with care in order to improve the orthogonality and
alignment properties of the final mesh.

The parallel mesh generation approach is based on dedicated multi-level metric- based mesh
partitioning techniques. The use of the cavity-based framework allows to predict effectively the
CPU for each remeshing phase. The accurate estimate of element-based allows to define effective
load balancing and migration strategies. Anisotropie meshes with more than a billion elements
and with complex geometries are generated on small clusters (120 cores) within 10 to 20 minutes.

86 Chapter 3. Metric-aligned, metric-orthogonal and parallelism

Chapter 4

High-order mesh visualization and
adaptation

High-order approximations are becoming a standard approach to represent numerical solutions.
Many numerical schemes then rely on high-order polynomials to solve PDEs. In addition to
the typical issues for very high-order schemes (stability, convergence, . . .), several additional
difficulties arise in terms of meshing and rendering. For instance, the accurate rendering of
high-order numerical solutions is one of them. As the graphic pipeline relies on linear interpo-
lation and primitives, the cost of accurate high-order rendering is usually high as most of the
process are based on subdividing into linear sub entities. Anisotropic mesh adaptation, based on
interpolation error, is an additional field where the use of high-order polynomials is not trivial.
Indeed, extending this approach to interpolation schemes of order strictly greater than 2 remains
a challenge, especially in 3D. The main issue is the difficulty to retrieve anisotropic information
from differential forms of degrees 3 or more that represent locally the spacial error with respect
to the current mesh.

The chapter summarizes some contributions for high-order numerical solutions. The first
one is related to pixel-exact rendering for high-order numerical mesh and solution. This work
has been initiated during the Phd Thesis of R. Feuillet with the following contributions [1, 33].
Mesh adaptation for high-order solutions is a joint work with O. Coulaud during his postdoctoral
time [37]. Extension for high-order CAD meshing [26, 32] is a joint work with R. Feuillet and
O. Coulaud.

4.1 High-order techniques and related issues in meshing and vi-
sualization

For years, the resolution of numerical methods has consisted in solving PDEs by means of a
piecewise linear representation of the physical phenomenon on linear meshes. This choice was
mostly driven by computational limitations. With the increase of the computational capabilities,
it became possible to increase the polynomial order of the solution while keeping the mesh
linear. This was motivated by the fact that even if the increase of the polynomial order requires
more computational resources per iteration of the solver, it yields a faster convergence of the
approximation error [Vanharen 2017] and it enables to keep track of unsteady features for a
longer time and with a coarser mesh than with a linear approximation of the solution. However,
in [Ciarlet 1978, Lenoir 1986], it was theoretically shown that for elliptic problems the optimal
convergence rate for a high-order method was obtained with a curved boundary of the same
order and in [Bassi 1997], evidence was given that without a high-order representation of the

88 Chapter 4. High-order mesh visualization and adaptation

boundary the studied physical phenomenon was not exactly solved using a high-order method.
In [Zwanenburg 2017], it was even highlighted that, in some cases, the order of the mesh should
be of a higher degree than the one of the solver. In other words, if the used mesh is not a
high-order mesh, then the obtained high-order solution will never reliably represent the physical
phenomenon.

Based on these issues, the development of high-order mesh generation procedures appears
mandatory. To generate high-order meshes, several approaches exist. The first approach was
tackled twenty years ago [Dey 1999] for both surface and volume meshing. At this moment
the idea was to use all the meshing tools to get a valid high-order mesh. The same problem
was revisited a few years later in [Sherwin 2002] for biomedical applications. In these first
approaches and in all the following, the underlying idea is to use a linear mesh and elevate it
to the desired order. Some make use of a PDE or variational approach to do so [Abgrall 2014,
Persson 2009, Fortunato 2016, Moxey 2016, Turner 2016, Xie 2013, Hartmann 2016], others are
based on optimization and smoothing operations and start from a linear mesh with a constrained
high-order curved boundary in order to generate a suitable high-order mesh [Karman 2016,
Gargallo-Peiró 2013, Toulorge 2013].

A natural question is consequently to study an optimal position of the high-order nodes on
the curved boundary starting from an initial linear or high-order boundary mesh. This can be
done in a coupled way with the volume [Ruiz-Gironès 2016a, Toulorge 2016] or in a preprocessing
phase [Ruiz-Gironès 2015, Ruiz-Gironès 2016b]. In this process, the position of the nodes is set
by projection onto the CAD geometry or by minimization of an error between the surface mesh
and the CAD surface. Note that the vertices of the boundary mesh can move as well during
the process. In the case of an initial linear boundary mesh with absence of a CAD geometry,
some approaches based on normal reconstructions can be used to create a surrogate for the CAD
model [Vlachos 2001a, Ims 2019].

The use of both high-order methods and meshes also unveils a problem regarding the visu-
alization techniques hitherto used. Indeed, the standard approaches are specifically tailored to
display linear solution on linear meshes as it is what the hardware naturally process. A common
strategy [Schroeder 2006, Remacle 2007, Maunoury 2018] consists in performing a preprocessing
step that creates both visualization mesh and solution fitted to the variations of the high-order
solution and geometry so that it gives a proper rendering of a high-order solution while keeping
standard rendering techniques. On the contrary, strategies specifically tailored for high-order
finite elements can be set up [Peiró 2015]. However, the cost of these methods in terms of CPU
time and memory footprint is high.

Outline. In this chapter, we first review the main components allowing an accurate rendering
of high-order meshes and solutions. Then, we review the log-simplex method, which provides
a bound of any nonlinear k-differential forms in terms of quadratic form to the power k+1

2 .
From this, we can extend the continuous mesh analogy of Chapter 1 to the control of high-order
interpolation in a given Lp norm. This estimate is then used to derive high-order parameter-
independent geometric approximation of CAD geometry.

4.2. Almost pixel-exact rendering of high-order solution 89

4.2 Almost pixel-exact rendering of high-order solution

Classic visualization software like ParaView [KitWare Inc.], TecPlot [TecPlot Inc.], FieldView
[Intelligent Light], Ensight [Ansys Inc.], Medit [Frey 2001a], Vizir (OpenGL legacy based ver-
sion) [Loseille 2016], Gmsh [Geuzaine 2009], . . . historically rely on the display of linear triangles
with linear solutions on it. More precisely, each element of the mesh is divided into a set of
elementary triangles. At each vertex of the elementary triangle is attached a value and an
associated color. The value and the color inside the triangle is then deduced by a linear inter-
polation inside the triangle. With the increase of high-order methods and high-order meshes,
these software adapted their technology by using subdivision methods. If a mesh has high-order
elements, these elements are subdivided into a set of linear triangles in order to approximate the
shape of the high-order element [Vlachos 2001a]. Likewise, if a mesh has a high-order solution
on it (Fig. 4.1, first line), each element is subdivided into smaller linear triangles in order to
approximate the rendering of the high-order solution on it. The subdivision process can be really
expensive if it is done in a naive way (Fig. 4.1, second line). For this reason, mesh adaptation
procedures [Remacle 2007, Maunoury 2018, Maunoury 2019] are used (Fig. 4.1, third line) to ef-
ficiently render high-order solutions and high-order elements using the standard linear rendering
approaches. Even when optimized these approaches do have a huge RAM memory footprint as
the subdivision is done on CPU in a preprocessing step. Also the adaptive subdivision process
can be dependent on the palette (e.g. the range of values where the solution is studied) as the
colors only vary when the associated values are in this range. In this case, a change of palette
inevitably imposes a new adaptation process. Finally, the use of a non-conforming mesh adap-
tation can lead to a discontinuous rendering for a continuous solution (Fig. 4.1, third line).
Other approaches are specifically devoted to high-order solutions and are based on ray casting
[Nelson 2011, Nelson 2012, Peiró 2015]. The idea is for a given pixel, to find exactly its color.
To do so, for each pixel, rays are cast from the position of the screen in the physical space
and their intersection with the scene determines the color for the pixel. If high-order features
are taken into account, it determines exactly the color for this pixel. However, this method is
based on two nonlinear problems: the root-finding problem and the inversion of the geometrical
mapping. These problems are really costly and do not compete with the interactivity of the
standard linear rendering methods even when these are called with a subdivision process.

In this section, we present how the OpenGL 4.0 rendering pipeline has the necessary flexibility
for high-order elements and solution rendering. OpenGL is a graphic API widely used for graphic
rendering. The customizable part of its graphic-fixed pipeline is based on the use of shaders.
They are GLSL (a C-like programming language) source code files that replace parts of the
standard OpenGL pipeline. The main pros of redefining all the shader stages are:

• The memory footprint in RAM is limited to the size of the mesh,

• Addition (subdivided) entities are created on the graphic cards directly on the fly,

• Solutions are computed in the fragment shader so that new shape functions and interpolation
schemes can be interchanged.

90 Chapter 4. High-order mesh visualization and adaptation

-1

1

0

1

1

1-1 1

0

-1

Figure 4.1 – From top to bottom, rendering of a P 3-solution: First Line: Definition of the
solution on a triangle and its exact representation with its isovalues. Second line: representation
of the solution linearly subdivided on a regular grid of 625 triangles with its isovalues. Third
line: representation of the solution linearly subdivided on an adaptive grid of 1858 triangles
(generated by Gmsh [Geuzaine 2009]) with its isovalues.

The OpenGL 4.0 pipeline can be customized with up to five different shader stages (see Fig. 4.7).
More precisely, the description of the shaders is the following:

• The Vertex Shader (VS), that corresponds to the source code files xxx.vs. Its input
variables are vertex attributes. This shader can also send other information down the pipeline
using shader output variables. For instance, the vertex shader can compute its color and
give it to the pipeline. The data corresponding to the vertex position must be transformed
into clip coordinates and assigned to the output variable gl_Position. The vertex shader is
executed (possibly in parallel) once for each vertex.

• The Fragment Shader (FS), that corresponds to the source code files xxx.fs. Its input
variables come from the graphic pipeline and is a transformation of other shader’s outputs.

4.2. Almost pixel-exact rendering of high-order solution 91

The fragment shader determines the appropriate color for the pixel and sends it to the frame
buffer using output variables. Also, among built-in variables, we can pass through our own
variables which means that for a pixel, we can deduce (x, y, z), (u, v), or primitive ids. Using
these variables, it is possible to display anything which is a function of these variables (see
Fig. 4.2). In our context, the Fragment Shader is used to perform the wireframe rendering
as well as high-order solution and isoline rendering (see Section 4.2.2). For the storage of
raw data (like high-order solutions), textures are used. The fragment shader is executed
(possibly in parallel) once for each fragment (pixel) of the polygonal object being rendered.

These two shaders can be enough to define a customization of the graphic pipeline. In this case,
between the two shaders, the vertices are assembled into primitives, clipping takes place and
the viewport transformation is applied. The principle of the involved shaders is summed up in
Fig 4.3. In our case, we use this customization to display dots.

Figure 4.2 – Example of an exact rendering of the function sin(100πx)+sin(100πy)+sin(100πz)

(with its isolines on the right) on a coarse mesh of the unit cube. This is performed by using
the Fragment Shader.

Vertex
Shader
xxx.vs

Fragment
Shader
xxx.fs

Figure 4.3 – Shaders used for a simple customization of the OpenGL graphic pipeline.

However, the OpenGL pipeline can be even more customized thanks to the following shaders:

92 Chapter 4. High-order mesh visualization and adaptation

• The Geometry Shader (GS), that corresponds to the source code files xxx.gs. This shader
cannot be used without the two previous shaders and is executed once for each primitive. It
has access to all the input data of the vertices of the primitive that can be provided either by
the vertex shader or by the tessellation evaluation shader (see below). As a consequence all
variables are arrays. The GS can receive some primitives and can emit other primitives as
long as only one type of primitive is in input or output. For instance, it can receive vertices
and output triangles. The GS functionality is centered around two primitives: EmitVertex
and EndPrimitive. To each vertex of the primitive, all useful data are linked with it and
then the vertex is emitted thanks to the first primitive. Once all vertices of the primitive
are processed, the second primitive is called. Also, every data attached to each vertex is by
default linearly interpolated inside the primitive and sent to the fragment shader. In our
context, the GS is used to define the flat shading (see Fig. 4.4, left) and the shrinking of the
linear elements (see Fig. 4.4, middle). For all the elements, when a clipping plane is used,
the operation is performed at this stage (see Fig. 4.4, right) and finally, the GS is used to
propagate the physical and barycentric coordinates ((x, y, z) and (u, v)) as well as normals.
More details are given in [1].

Figure 4.4 – Example of three different operations performed with the Geometry Shader.

The principle of the involved shaders is summed up in Fig. 4.5. In our case, we use this
customization to display simple and linear geometries such as edges and triangles of degree 1.

Vertex
Shader
xxx.vs

Fragment
Shader
xxx.fs

Geometry
Shader
xxx.gs

Figure 4.5 – Shaders used for the display of simple geometries using the OpenGL graphic pipeline.

To display more complex geometries such as high-order elements, a subdivision of the element

4.2. Almost pixel-exact rendering of high-order solution 93

into linear is sometimes required. This is performed with the pipeline as it is shown thereafter.

• The Tessellation Control Shader (TCS) and the Tessellation Evaluation Shader
(TES), that are respectively corresponding to the source code files xxx.tcs and xxx.tes. These
shaders cannot be used without the three previous shaders. As soon as tessellation shaders
are used, the only used primitives are patches. A patch primitive is a part of the geometry
defined by the programmer. The number of vertices by patch is configurable as well as the
interpretation of the geometry. For instance, the patch can be used as a set of control points
that defined an interpolated curve or surface (Bézier curve for instance). More precisely,
the TCS sets up the Tessellation Primitive Generator (TPG) by defining how the primitives
should be generated by it and in particular in how many sub-entities the element should be
divided (e.g. tessellated). The TCS is executed once for each entity and it can compute
additional information and give it to the TES. In our context, the level of discretization (e.g.
the granularity of the tessellation) given by the TCS is controlled with basic geometrical
error estimates so that straight elements are not subdivided more than necessary. The TPG
computes in the parameter space, the discretization of parameterized entities like quadrilat-
erals, triangles and isolines. Once the discretization is done, the entities are sent to the TES.
The TES is executed once for each parameter space vertex. For a given vertex, it determines
the position of the vertices in the physical space thanks to the coordinates of the parameter
space and also other vertex-related data. All the data related to each sub-entity are then sent
to the GS that processes them like any other entity. The principle of the involved shaders
is summed up in Fig. 4.6. For our purpose, we use this customization to display nonlinear
geometries such as quadrilaterals and any other high-order element.

Tessellation
Evaluation

Shader
xxx.tes

Tessellation
Control
Shader
xxx.tcs

Vertex
Shader
xxx.vs

Fragment
Shader
xxx.fs

Geometry
Shader
xxx.gs

Figure 4.6 – Shaders used for the display of nonlinear geometries using the OpenGL graphic
pipeline.

The general principle of all the combinations of shaders is summarized in Fig. 4.7.

4.2.1 High-order elements visualization

In this section, we show how we take advantage in practice of the OpenGL graphic pipeline to
display geometrical finite elements of any kind. In particular, we describe some implementation
details.

94 Chapter 4. High-order mesh visualization and adaptation

Tessellation
Evaluation

Shader
xxx.tes

Tessellation
Control
Shader
xxx.tcs

Vertex
Shader
xxx.vs

Fragment
Shader
xxx.fs

Geometry
Shader
xxx.gs

If no xxx.tcs
and no xxx.gs

If no xxx.tcs

Figure 4.7 – Summary of all the possible combinations of shaders while using the OpenGL graphic
pipeline.

For simple shapes like P 1-triangles and edges, no tessellation is needed as these elements are
planar. In this case, only three shaders are used: the Vertex Shader, the Geometry Shader (which
outputs triangles or lines) and the Fragment Shader. For more complex and potentially non-
planar geometries (Q1-quadrilateral, or any higher-order element), the two tessellation shaders
are added to the three others. To process any geometry, it is first transformed into its Bézier
form and then the obtained control points are sent to the graphic pipeline. On output, a reliable
representation of the geometry is displayed on the screen. For the sake of clarity, let us have
a look on the case of a P 3-triangle (see Fig. 4.8). A P 3 triangle is generally defined by its 10

Lagrange points (here in barycentric notations): (Mijk)i+j+k=3 (see Fig. 4.8, left). The first
step is to compute the control points. It is done in a hierarchical fashion: the points lying on
the edges of the surface first and the points lying on the inside of the surface. For the first edge,
we have:

P300 = M300,

P120 =
18M210 − 9M120 − 5M300 + 2M030

6
,

P210 =
18M120 − 9M210 − 5M030 + 2M300

6
,

P030 = M030,

and the same goes for the two other edges. The inner surface control point can be deduced:

P111 =
9M111

2
− P300 + P030 + P003

6
−
∑2

j=1

∑2−j
i=1 Pij0 + Pi0j + P0ij

2
.

Control points are preferred to Lagrange points as their use minimizes the number of operations

4.2. Almost pixel-exact rendering of high-order solution 95

which is a great property when it comes to GPU programming. For every P 3 triangle, its 10
control points are sent to the graphic pipeline.

Figure 4.8 – Different steps involved in the drawing of P 3-Triangle. Left, initial distribution of
points. Middle, created tessellation and right, final geometry rendering.

The first step is the processing by the Vertex Shader. In this shader, the coordinates of each
vertex are scaled and multiplied by the viewport and model matrices so that they are transformed
into clip coordinates. As the element is curved, the next shader is the Tessellation Control Shader
(for linear elements, it goes directly to the Geometry shader). In this shader, the number
of subdivisions along each edge of the geometry and the number of subdivisions inside the
surface are set. Thanks to these parameters, a tessellation (e.g. a subdivision in triangles
or lines) of the parametric space is generated by the Tessellation Primitive Generator. The
Tessellation Evaluation Shader is then executed for each point of the tessellation. In the case
of a triangular element, these points are characterized by a triplet (u, v, w) with 0 ≤ u, v, w ≤ 1

and u + v + w = 1 which is the corresponding sampling in the parameters space. Thanks to
this triplet, the coordinates of the corresponding point in the physical space are computed (see
Fig. 4.8 middle and left):

M(u, v, w) =
∑

i+j+k=3

3!

i!j!k!
uivjwkPijk.

In a same manner, the geometric normal is computed. This way, an approximation made of
triangles of the curved geometry is performed on the fly on the GPU. Each sub-triangular
element is then sent to the Geometry Shader. In this shader, all useful data related to each
vertex defining the (sub) elements are attached: parametric coordinates, physical coordinates,
distance to the clipping plane (if any). Once all these data are set, they are linearly interpolated
to define them inside the primitive and sent to the Fragment Shader. The Fragment Shader
handles all the entities for each fragment/pixel related to the primitive previously processed. It
does give a wanted background color to the pixel and apply a shading to it (toon, diffuse or
Phong model) using the normals provided by the previous shader. It is also able to perform
wireframe, numerical solution and isoline rendering (see Fig. 4.8, right and Fig. 4.9). More
details are given in [1]. By performing all these previous steps, it is possible to display any type
of surface element. We note that the display of the tessellation grid (like in Fig. 4.8 middle)
can detect if an high-order element is valid or not. Indeed, if the grid is not properly mapped

96 Chapter 4. High-order mesh visualization and adaptation

because sub-triangles overlap each other, this means that the mapping is not invertible as the
physical position of the points of the tessellation grid is set by the mapping.

Figure 4.9 – Example of three different displays (toon, wire and Phong model) on an engine of
the NASA Common Research Model.

4.2.2 High-order solutions visualization

In this section, we highlight the interesting properties offered by the OpenGL graphic pipeline
and how we can use them to display high-order solutions in an almost pixel-exact fashion.

To display high-order (scalar) solutions using the OpenGL graphic pipeline, the Fragment
Shader is used. As seen in the previous section, when considered, the Fragment shader is attached
to a pixel representing a fragment of a given primitive associated to an element. In particular, it
receives the interpolation of the various data attached to the vertices defining the primitive. It
does interpolate normals, parametric and physical coordinates. Thus, if a given element is defined
by a linear mapping, it has access to the exact set of physical coordinates associated to a given
set of parametric coordinates. When the mapping is not linear, it does give an approximation,
depending on the level of the tessellation, of the set of physical coordinates associated to a given
set of parametric coordinates. Since the parametric coordinates are available in the Fragment
Shader, the only thing left to display high-order solutions is to provide the value of the solution
at each degree of freedom of each element. A convenient way to transmit these data is to use
textures that are meant to store raw data of large size. From a practical point of view, it is the
control solutions (e.g. the coefficients of the solution in the Bernstein basis) that are stored in
the texture.
Once parametric coordinates and control solutions are obtained, the solution is computed using
its exact polynomial expression. The effective computation of this solution is based on a de
Casteljau’s algorithm which evaluates with a minimal number of operations a polynomial of any
degree using its control coefficients. The value is then known for each fragment. The main pro
is that if the mapping is linear then the computed solution is pixel-exact (Fig. 4.10), otherwise,
it is almost pixel-exact.

Furthermore, a special treatment is performed for the display of a solution at planar quadri-
laterals. Indeed, the subdivision in 2 triangles is enough for the visualization of the shape of the
quadrilateral as the two triangles span the same shape as the considered quadrilateral (Fig. 4.11,
first line). However, it is not enough for the rendering of a solution (Fig. 4.11, third line right
and left). In fact, by using the Geometry Shader, the parametric coordinates are interpolated
inside each of the sub-triangle in a linear way, but not in a bilinear way. Consequently, if the

4.2. Almost pixel-exact rendering of high-order solution 97

-1

1

0

1

1

1-1 1

0

-1

Figure 4.10 – Pixel-Exact rendering without subdivision of a P 3-solution on a triangle.

quadrilateral is not a parallelogram, the solution will not be reliably rendered. For this reason,
another error estimate is considered:

εsolquad =
||P00 − Pn0 − P0n + Pnn||

max(||P0n − P00||, ||Pnn − P0n||)
.

This error estimate has the ability to detect if the mapping associated to a Q1 quadrilateral has
quadratic terms or not.
Finally, to display a numerical solution, it is mandatory to have a palette and its colormap (e.g.
a range of values for the solution and its associated color in RGB). In a same manner, these two
arrays are sent to the Fragment Shader using textures. The next step is therefore to transform
our computed solution into a RGB vector. First, we check the values of the bounds of the palette
and if the solution is not inside the bounds, it is set to the bound of closest value. The RGB
vector is then deduced using the colormap array.

4.2.3 Examples of high-ordre rendering

We illustrate this approach on two 3D numerical examples : a P 3 boundary element solution on
an aircraft and an unsteady wave propagation using Q6 solution. All the following examples of
this chapter use this pixel-exact rendering.

High-order boundary element solution This example is taken from [6]. It shows a P 3-
geometry of an unarmed F15 aircraft. The considered problem is the scattering of plane waves
using adaptive Boundary Element Method (BEM). In Fig. 4.12, the resolution of a P 3 BEM on
the aircraft is shown. In Fig. 4.13, the used P 3-mesh is shown with various tessellation levels.
We clearly observe the diffraction phenomenon in a high-order fashion as it takes into account
the high-order features of the geometry.

Wave propagation with Perfectly Matched Layers (PML) This example is based on the
numerical simulation explained in [Baffet 2019]. It is a wave propagation inside the cube [−1, 1]3

with a PML boundary condition on the left (y = −1) and on the right (y = 1), and a Dirichlet

98 Chapter 4. High-order mesh visualization and adaptation

Figure 4.11 – Left, from top to bottom: rendering of a solution on a nonlinear Q1-quadrilateral
with the used tessellation. Middle and right, from top to bottom: rendering of the solution
on quad for each of its two decomposition in triangles; linear rendering done using the decom-
position; bilinear rendering with the Fragment Shader but with a wrong approximation of the
parametric coordinates due to the decomposition in only two triangles.

boundary condition at the top (z = 1) and at the bottom (z = −1). It is solved on an hexahedral
mesh with a Q6 solution using Gauss-Lobatto quadrature points. The resolution is done with
spectral finite elements and a Leap-Frog scheme for time integration. In Fig. 4.15 and 4.14, we
show the mesh and the solution at the following time step on the volume elements lying along
x = 0, y = 0 and z = 0. We clearly observe the absorbing boundary condition at the boundary
x = 1 and the reflecting waves at the boundary y = 1. For this case, the hexahedral rendering
is pixel-exact, as the geometrical elements are truly linear.

4.2. Almost pixel-exact rendering of high-order solution 99

Figure 4.12 – High-order BEM resolution of the scattering of plane waves on an aircraft. Top,
meshes. Middle, solution, Bottom, isolines. Bottom right, zoom around the cockpit. Courtesy
of Stéphanie Chaillat (ENSTA).

Figure 4.13 – Left, zoom on a curved part of the P 3-mesh used for the BEM resolution. Middle
and right, various tessellation levels used for the display of the geometry. Courtesy of Stéphanie
Chaillat (ENSTA).

100 Chapter 4. High-order mesh visualization and adaptation

Figure 4.14 – Zoom in the middle of the cube with the solution of Fig. 4.15 with its isolines.
Courtesy of Sébastien Impériale (INRIA).

Figure 4.15 – Q6 solution of a wave propagation problem on an hexahedral mesh. Courtesy of
Sébastien Impériale (INRIA).

4.3. High-order mesh adaptation 101

4.3 High-order mesh adaptation

Following most of the high-order a priori error estimates [Ciarlet 1978], we focus on a simple
error model as in [37]. Let u be a smooth solution on the domain Ω, H be a mesh of Ω and k be
an arbitrary positive integer. In what follows, Πku denotes the projection of u onto the finite
elements space P k(H), whose functions are polynomials of degree k on each element K of H.
For all x0 ∈ Ω, it is well known that there exists a positive constant C such that, for all x0 ∈ Ω

and x ∈ Rn,
|u(x)−Πku(x)| ≤ C

∣∣∣d(k+1)u(x0)(x− x0)
∣∣∣

+O
(
‖x− x0‖k+2

)
,

(4.1)

where dk+1u(x0) is the differential form of u of order k + 1 at x0, |.| is the absolute value
function and ‖.‖ denotes the Euclidean norm of Rn. In the high order case, the main idea is to
replace the right hand side of (4.1) by a term governed by a metric field Q = (Q(x))x∈Ω, which
approximates the k+ 1 differential form of u. More precisely, we are looking for Q such that for
all x0 ∈ Ω, x ∈ Rn ∣∣∣dk+1u(x0)(x− x0)

∣∣∣ ≤ (t (x− x0)Q(x0) (x− x0)
) k+1

2 (4.2)

The main issue is to find the metric field Q such that the inequality (4.2) is as optimal as
possible. From a geometrical point of view, the local problem is to find the largest ellipse in 2D
(or the largest ellipsoid in 3D) included into the domain surrounded by the level set of level 1 of
d(k+1)u(x0). Indeed, let BQ =

{
x ∈ Rn : txQx ≤ 1

}
be the unit ball of a metric Q, which is an

ellipse in 2D (an ellipsoid in 3D). Now assume that, for all x ∈ Rn such that d(k+1)u(x0)(x) = 1,
one has txQx ≥ 1. Let x ∈ Rn and y =

x∣∣d(k+1)u(x0)(x)
∣∣ 1
k+1

. In particular d(k+1)u(x0)(y) = 1,

and:

d(k+1)u(x0)(y) ≤ tyQ y.
Since d(k+1)u(x0) is a homogeneous polynomial of degree k + 1, it comes

1 ≤
txQx∣∣d(k+1)u(x0)(x)

∣∣ 2
k+1

,

and consequently ∣∣∣d(k+1)u(x0)(x)
∣∣∣ ≤ (txQx) k+1

2 , for allx ∈ Rn.

The purpose of the next section is to solve this minimization problem.

4.3.1 Log-simplex method

The main difference between the P 1 and the P k adaptation methods relies on the fact that Q
is directly given by the Hessian matrix of u when dealing with P 1 adaptation, whereas it is
mandatory to find a suitable metric field satisfying (4.2) for the P k adaptation. The log-simplex
algorithm is a way to compute such a metric field. It is based on a sequence of linear problems

102 Chapter 4. High-order mesh visualization and adaptation

written in terms of the logarithm matrix L = log(Q). In this section, the highlights of this
method are recalled.
Given a homogeneous polynomial p of degree k+ 1 on Rn which stands for d(k+1)u(x0), a set of
points {x1, ..., xm} of Rn such that p(xi) = 1 for all i ∈ {1, ...,m} is considered. The optimiza-
tion problem that the log-simplex method solves is the following.

Find a metric Q such that

det(Q) is minimal,
txiQxi ≥ 1, for all i ∈ {1, ...,m} .

(4.3)

The first line of (4.3) translates the fact that we are looking for the metric with the largest area
(or volume in 3D). This geometric framework has been notably studied from a theoretical point
of view by [Cao 2007, Cao 2008] and from a numerical point of view by [Hecht 2014], but in
2D only. On the contrary to these works, the method which is introduced in the present article
can be implemented numerically in both 2D and 3D, and is much faster than the one studied
by [Hecht 2014]. Since the cost function of this problem is nonlinear,we rewrite it as a problem
in L = log(Q). Notice that L is not a metric but only a symmetric matrix. This formulation
also allows the discrete counterpart of the problem to be well posed. Indeed, in [37], it is shown
that the discrete form of (4.3) is ill-posed. For det(Q) = exp(trace(L)), a linear cost function is
recovered by replacing Q by L in (4.3). On the contrary, the constraints which are linear on Q
become nonlinear when writing them in terms of L. This can lead to really expensive compu-
tations. To avoid this problem, the convexity property of the exponential is used and replaces
these constraints by approximated linear ones. More precisely, through the classic convexity
inequality, if x ∈ Rn satisfies txLx ≥ −‖x‖2 log

(
‖x‖2

)
, it ensures that txQx ≥ 1. By this

way, the following linear optimization problem is obtained.

Find a symmetric matrix L such that

trace(L) is minimal,
txi Lxi ≥ −‖xi‖2 log

(
‖xi‖2

)
, ∀i ∈ {1, ...,m} .

(4.4)

Since this problem is linear in L, it can be solved by a simplex method (see for instance
[Dantzig 2003]). Unfortunately, in most of the cases, solving (4.4) once does not provide ac-
curate metrics, in the sense that the unit ball of the obtain metric Q = exp(L) can be far from
the level set of p (see Fig. 4.16).
This issue is dealt by an iterative process. More precisely, once we have computed the solution of
(4.4) and recovered Q = exp(L), we apply the mapping x→ Q 1

2x by replacing p by q = p◦Q− 1
2 .

Then, we take a new set of points {x1, ..., xm} such that q(xi) = 1, for all i ∈ {1, ...,m} and
solve again (4.4). Finally, the log-simplex algorithm is the following.
In order to implement numerically the log-simplex method, notice that this algorithm must
contain a polynomial reduction so that the possible infinite branches in the level set of d(k+1)u

disappear. All the theoretical and numerical issues of the log-simplex method are described in
detail in [37].

4.3. High-order mesh adaptation 103

Figure 4.16 – Illustration of the log approximation for the constraints for an error level 1 (in
grey). The optimal metric (in red) is far from the boundary of the error due to the convexity
approximation.

input : A mesh H of Ω

d(k+1)u(x), for all x ∈ H

output: Q = (Q(x))x∈H

foreach x ∈ H do
repeat

choose a set of points {x1, ..., xn} on the level set of p of level 1

perform the log-simplex algorithm and obtain a metric Q
replace p by p ◦ Q− 1

2

until convergence;
end

From (4.2), we are able to deduce an optimal metric field M minimizing the Lp high order in-
terpolation error when considering unit meshes with respect to M. Following the demonstration
of [11, 12], the high order interpolation error in Lp norm is equivalent to

Ekp (M, u) =

(∫
Ω

∣∣∣trace(M− 1
2 (x)Q(x)M− 1

2 (x)
)∣∣∣p dx) 1

p

. (4.5)

By a calculus of variations, we show that, for a fixed complexity N ∈ (0,+∞), the optimal
metric field minimizing Ekp is unique and given by:

Mp,k
opt(u)(x) = N 2

3

(∫
Ω

(detQ)
p(k+1)

2p(k+1)+6

)− 2
3

(detQ(x))
− 1
p(k+1)+3 Q(x). (4.6)

In particular, if k = 1 and Q = |Hu|, one recovers the P 1 optimal metric field defined in
Chapter 1 (Equation (1.6)). From an initial mesh H0 of Ω, the whole P k adaptation process
follows iteratively the next steps.

104 Chapter 4. High-order mesh visualization and adaptation

input : Initial mesh H0

Complexity N

output: Final mesh H1

repeat
Compute d(k+1)u(x), for every vertex x of H0

Compute Q(x) satisfying (4.2), for all x ∈ H0

ComputeM(x) = (det |Q(x)|)−
1

p(k+1)+3 Q(x), for all x of H0

ComputeMp,k
opt = αM, with α > 0 such that C(Mp,k

opt) = N

Remesh H0 and obtain H1 which is unit with respect toMp,k
opt

Replace H0 by H1

until convergence;

4.3.2 Numerical examples

In this section, we consider two smooth functions. For each function, several adaptations are
performed for interpolation orders from 1 to 5. Note that only the discrete P k solution is used
to recover the differential form of order k + 1., i.e., we never used the exact derivatives of the
function, only its point-wise values are used. To do so, we have extended the L2 projection to the
case of high-order differential forms (see [Vallet 2007]). Once the numerical (k + 1) differential
form of the smooth solution u is recovered, we apply the log-simplex algorithm and derive the
optimal Lp metricMp,k

opt(u) for a given complexity N . The interpolation error ‖u−Πku‖L2(Ω) is
computed using a 10th order Gauss quadrature integration. To compare simultaneously different
interpolation orders, the degrees of freedom (DoF) are used instead of the number of the nodes.
The error is then used to compare the convergence rate to the optimal one. According to
Equalities (4.5) and (4.6), the interpolation error induced by a unit mesh with respect to the
optimal metric fieldMp,k

opt(u) satisfies

‖u−Πku‖Lp(Ω) ≤
C

N k+1
3

, with C > 0. (4.7)

The anisotropic meshes are generated by using a unique cavity operator of Chapter 2.

Toy problem. The first function is tailored such that it has isotropic variation for linear inter-
polation, strong y anisotropic component at third order and x anisotropic component at fourth

order. The function is defined on
[
−1

2 ,
1
2

]2 with f(x, y) = x2 + y2 +
x3

10
+

y4

105
. We observe in

Fig. 4.17 P 1, P 2 and P 3 adaptation. We verify that an isotropic mesh is obtained at order one,
x-aligned mesh at order 2 and finally y-aligned mesh at order 3.

4.4. High-order surface mesh generation 105

Figure 4.17 – P 1, P 2 and P 3 adapted meshes for function f .

High-frequency function The second function oscillates at high frequency and contains small
details, it is given by :

fr(x, y, z) = 8xyz sin(5π xyz)4 +
1

10

(
1− (sin(5π xyz)4

)8
cos(100π xyz). (4.8)

The high frequencies variations of the function are depicted in Fig. 4.18 (left). In this case, the
asymptotic rate of convergence is not reached directly due to the small details of the function
that are captured for sufficiently small sizes of the mesh, especially for k > 1. This does not
appear for the linear case as the finest mesh is still too coarse with respect to these variations
of small amplitudes. The final mesh for P 1 contains more than 2 000 000 vertices while the
equivalent mesh for P 5 in term of DoF contains 19 779 vertices, 11 214 triangles and 101 592
tetrahedra for a error level 3 orders of magnitude below the linear curve. The uniform meshes
have a similar behavior, see Fig. 4.18 (right). Again, the sequence of adaptive meshes have
lower error curves and the error is 2 order of magnitude smaller in the asymptotic range for
P 5 interpolation. A high level of anisotropy is kept for all k due to the small frequencies, see
Fig. 4.19. In all the figures, we assess the interest of mesh adaptation for high-order functions.
In particular, we show no loss of accuracy in the solution rendering while the mesh (and the
number of used degrees of freedom) is coarsened and the order of the solution increased. Note
that, as all the meshes are linear, the rendering is pixel-exact. Table 4.1 compares the CPU
times for one iteration of the adaptation process. Even if it is longer to compute the high order
derivatives and the optimal metric field, the time needed for remeshing is much smaller when
dealing with high order interpolation, and so is the total CPU time.

4.4 High-order surface mesh generation

As introduced in Chapter 1, CAD geometry is usually defined continuously as NURBS func-
tion (Non-uniform rational B-spline) as it is a common tool in geometry modeling and CAD
systems [Piegl 1997]. From a conceptual point of view, meshing a parametric surface consists
in meshing a 2D domain in the parametric space. The linear case has been widely studied for
years [Tristano 1998, Miranda 2002, Wang 2006, Laug 2010, de Siqueira 2010, de Siqueira 2014,

106 Chapter 4. High-order mesh visualization and adaptation

P 1 P 2 P 3 P 4 P 5

degrees of freedom 2 374 794 2 376 164 1 989 277 2 329 110 2 220 443

interpolation error 7.2× 10−5 6.9× 10−6 1.8× 10−6 3.9× 10−7 1.8× 10−7

total CPU time (s) 365 604 153 120 115

derivatives (s) 2 102 37 40 45

metric field (s) 26 409 100 70 64

remeshing (s) 330 63 11 6 4

Table 4.1 – CPU time and number of DoF for the sequence of adapted meshes for function fr.

Aubry 2015] and some approaches consist of meshing the 2D domain according to a curvature-
based metric [Borouchaki 2000b]. The use of this metric enables an independence to the used
parameters space as the curvature is an intrinsic data. The generation of high-order meshes
is on the contrary relatively new. The most common idea is to generate a linear mesh and
then to project the high-order nodes on the geometry. However, the position of the nodes may
not be suitable for a high-order representation of the boundary. For this reason, optimization
procedures are applied to the mesh to improve its shape [Toulorge 2016, Ruiz-Gironès 2015,
Ruiz-Gironès 2016a, Ruiz-Gironès 2016b, Turner 2016]. The procedure can be done by solving
an optimization problem or performing a spring analogy. This can also be performed directly
in the parameters space [Gargallo-Peiró 2013] by minimizing a distortion measure. In all these
cases, this is r-adaptation which is performed. The intent is to provide theoretical analysis
and practical algorithms for high-order parametric surface mesh generation. The use of the
high-order estimates of previous Section provides a node distribution which will be specifically
tailored for the high-order with a given threshold. Note that high order surface meshes have a
large set of applications. It can be naturally used as an input for the generation of 3D curved
meshes. In our case, high-order surface mesh is used advantageously as a surrogate CAD (geom-
etry) model. Indeed, it provides fast forward and inverse evaluation as required in classic linear
mesh adaptation.

4.4.1 Metrics for linear surface mesh generation

In the case of parametric surface meshing, the whole problem is to find a suitable metric thanks
to which a mesh adaptation process in the parameters space will be performed. First let us have
a look on the case of curve meshing.

Metrics for curve meshing

When dealing with meshing of parametric curves, it is frequent to perform a local analysis on
it. To do so, let us have a look on a Taylor expansion of a parametric curve t→ γ(t) ∈ R3, that
we will assume smooth enough, in the vicinity of t0.

γ(t) = γ(t0) + γ′(t0)(t− t0) +
γ′′(t0)

2
(t− t0)2 +O((t− t0)3).

4.4. High-order surface mesh generation 107

Figure 4.18 – From left to right, 1D extraction along the line xyz = cst, rate of convergence for
the optimal meshes for order 1,2,3,4 and 5.

Now if we consider a change of variable with s being the curvilinear abscissa such that s(t0) = 0

and ds
dt = ||γ′(t)|| then the Taylor expansion becomes:

γ(s) = γ(0) + sT +
1

2
κ(t0)s2N +O(s3)

whereT = γ′(t)
||γ′(t)|| and (κ,N) are such that dTds = κN. (κ,T,N) are intrinsic data [do Carmo 1976].

κ is called the curvature and can be computed with:

κ(t) =
||γ′(t)× γ′′(t)||
||γ′(t)||3 .

By setting B = T×N, (T,N,B) defines an orthornormal basis, of so-called Frénet frame.
Note that if we denote (x, y, z) the components of γ(t) in the Frénet frame defined in t0 with
γ(t0) = (x0, y0, z0) in this frame, we have: y = y0 +

1

2
κ(t0)(x− x0)2 +O(|x− x0|3)

z = z0 +O(|x− x0|3)
(4.9)

Based on the Frénet frame, and on the curvature, a 3D metric tensor can be deduced via:

M1 =
(
tTtNtB

)
1

(2
√
ε(2−ε)ρ(t))2

0 0

0 λ 0

0 0 λ

 T

N

B

108 Chapter 4. High-order mesh visualization and adaptation

P 1

P 2

P 3

P 4

Figure 4.19 – From top to bottom, P 1 to P 4 adapted meshes (left) with the corresponding
solution on it (right).

4.4. High-order surface mesh generation 109

where λ ∈ R is an arbitrary constant1, ρ(t) = 1
κ(t) is the radius of curvature, and 2

√
ε(2− ε) is a

scaling coefficient which guarantees, for a second order approximation of the curve, to maintain
a deviation gap between the mesh elements and the curve geometry of ε [Frey 2000]. As the
metric relies on only intrinsic data, it is independent of the parameterization.
The metric can be mapped back to the parameter space via the following formula:

M̃1 = tγ′(t)M1γ
′(t).

In this case, the formula simplifies to M̃1 = 1
h21

= ||γ′(t)||2

(2
√
ε(2−ε)ρ(t))2

.

Once the metrics for curves are set, the next step is to define metrics for the surfaces.

Metrics for surface meshing

The meshing process of parametric surfaces is a bit more complex. It relies on some differen-
tial geometry notions [do Carmo 1976]. For this purpose, let us consider a parametric surface
(u, v) → σ(u, v) ∈ R3 that we will assume smooth enough. In this case, the first fundamental
form I(du, dv) is defined as follows:

I(du, dv) = (du dv)

(
||σu||2 (σu, σv)

(σu, σv) ||σv||2

)(
du

dv

)
,

where (du, dv) is an elementary displacement, and σu (resp. σv) the partial derivative of σ
w.r.t. u (resp. v). The first fundamental form explains how the three-dimensional distances are
perceived in the two-dimensional space. In particular, it provides a two-dimensional Riemannian
structure to the surface with a metric tensor defined as:

MI =

(
||σu||2 (σu, σv)

(σu, σv) ||σv||2

)
.

In the same framework, comes also the second fundamental form II(du, dv) that is defined as
follows:

II(du, dv) = (du dv)

(
(σuu,N) (σuv,N)

(σuv,N) (σvv,N)

)(
du

dv

)
,

where (σuu, σuv, σvv) are the second derivatives of σ w.r.t (u, v) and N = σu×σv
||σu×σv || is the normal

vector to the surface. The second fundamental form expresses the gap of a surface to its tangent
plane at the order two.
Based on these two quadratic forms and their matrices, we are able, for a given point of the
surface, to define the principal curvatures (κi)i=1,2 and principal directions (Vi)i=1,2 (in 3D) as
solution of the generalized eigenvalue problem:

MIIvi = κiMIvi

Vi =
(σu σv)vi
|| (σu σv)vi||

i = 1, 2

1It sets the size in the normal plane to the curve

110 Chapter 4. High-order mesh visualization and adaptation

withMII being the symmetric matrix associated to the second fundamental form. These quanti-
ties are independent of the parameterization and when κ1 6= κ2, (V1,V2) forms an orthonormal
basis of the tangent plane. If we complete the basis with N, they form a local basis (V1,V2,N)

of R3. Note that if we denote (x, y, z) the components of σ(u, v) in this local basis defined in
(u0, v0) with σ(u0, v0) = (x0, y0, z0) in this basis, we have:

z = z0 +
1

2
(κ1(u0, v0)(x− x0)2 + κ2(u0, v0)(y − y0)2)

+O(‖(x− x0, y − y0)‖3).
(4.10)

Now, thanks to this basis and on the curvatures, we can define the following 3D metric tensor:

M2 =
(
tV1

tV2
tN
)
×

1
(c1ρ1(u,v))2

0 0

0 1
(c2ρ2(u,v))2

0

0 0 λ

 V1

V2

N

where λ ∈ R is an arbitrary constant, ρi(u, v) = 1

κi(u,v) for i = 1, 2 are the radii of curva-
ture, with the convention ρ1(u, v) ≤ ρ2(u, v) and c1and c2 are scaling coefficients. For the
direction of greater curvature (e.g. the direction given by V1), we want to control the devia-
tion under a threshold ε which comes down to set c1 to the value of 2

√
ε(2− ε). Now, as we

want the same threshold in all the directions in the tangent plane, the coefficient c2 is set to
2
√
ερ1ρ2 (2− ερ1ρ2) [George 2019]. Similarly to curves, the metric relies only on intrinsic data and

is therefore independent of the parameterization
Now, the metricM2 can be mapped back to the parameters space by applying the first funda-
mental form:

M̃2 =
(
tσu

tσv
)
M2

(
σu

σv

)
.

This is the metric that will be used as an anisotropic metric for the mesh adaptation in the
parameters space.

4.4.2 Computation of higher-order metrics

The object of this section is to deal with the extension of the previous framework for higher-
order elements. In particular, we seek for parameterization independent Taylor expansion similar
to (4.9) and to (4.10) with terms of degree greater than 2. First let us have a look on the case
of the curve.

Case of the curve

As seen previously, the metric should rely on intrinsic data to be independent of the parame-
terization. A way to do so is to have a look at the formula (4.9). This formula gives a Taylor
expansion of the gap of a curve to the straight edge at the order two and shows that it is driven
by the curvature. Moreover, this expansion is done with the physical coordinates which natu-
rally give an independence with respect to any parameterization. A natural idea is therefore to

4.4. High-order surface mesh generation 111

extend the previous Taylor expansion to get higher-order terms and deduce metrics that will be
fitted to high-order approximation.
To do so, let us write γ(t) in the Frénet frame (T0,N0,B0) associated to t0, a regular point of
γ. If we note X = x− x0, Y = y − y0, Z = z − z0, we have:

X = (γ(t)− γ(t0),T0),

Y = (γ(t)− γ(t0),N0),

Z = (γ(t)− γ(t0),B0).

Let us note φ(t) = (γ(t)− γ(t0),T0). If t0 is a regular point of γ then γ′(t0) 6= 0 and therefore
φ′(t0) 6= 0. The inversion function theorem can thus be applied and there exists a function ψ
such that ψ(X) = ψ(φ(t)) = t− t0 in the vicinity of t0. Moreover, if φ is Ck+1 then ψ is Ck+1

and ψ′(X) = 1
φ′(t) with X = φ(t).

Based on this statement, it is thus possible to get a Taylor expansion of t − t0 with respect
to X up to order k. To do so, let us compute the higher-order derivatives of ψ in t0. As γ (
and consequently φ) is an analytical function issued from CAD models, all its derivatives can
be computed using the implementation details of [Piegl 1997]. The derivatives of ψ are then
deduced using the following result [Faà di Bruno 1857]:

Theorem 1 (Faà di Bruno’s Formula). Let us consider f, g : R→ R of class Ck+1 with k+1 ≥ n,
then

dn

dxn
(g(f(x))) =

∑
E

n!

m1!..mn!
g(m1+...+mn)(f(x))

n∏
j=1

(
f (j)(x)

j!

)mj
,

where E = {(m1, ..,mn) ∈ Nn|∑n
k=1 k.mk = n}2.

In our case, we set g = ψ and f = φ and it comes that dn

dxn (g(f(x))) = 0 for k + 1 ≥ n ≥ 2.
This brings us to that for k + 1 ≥ n ≥ 2:

(φ′(t))nψ(n)(x) = F (ψ′(x), .., ψ(n−1)(x), φ′(t), .., φ(n)(t)),

where F is a function that can be directly deduced from Theorem 1.
This result means that as long as φ′(t) 6= 0, then ψ(n)(x) can be recursively computed given its
previous derivatives and the derivatives of φ.
Thanks to this, we can now write:

t = t0 +
k+1∑
n=1

anX
n +O(|X|k+2),

where an have been computed with the derivatives of ψ. Now if we recall that γ is Ck+1, we
also have:

Y =
k+1∑
n=1

bn(t− t0)n +O(|t− t0|k+2),

Z =

k+1∑
n=1

cn(t− t0)n +O(|t− t0|k+2).

2Note that in practice, the set E can be precomputed once for all for the range of values of n that are used.

112 Chapter 4. High-order mesh visualization and adaptation

By composition of both Taylor expansion, we then obtain a Taylor expansion of Y and Z in X
at the order k + 1 ≥ 2, which is independent of the parameterization and a generalization of
(4.9).
From this, we have an intrinsic information of the gap of a curve to the straight edge up to the
order k + 1.
We can then write: (

Y

Z

)
= Fk(X) +Ak+1X

k+1 +O(|X|k+2),

where Fk(X) is a polynomial of degree k in X and Ak+1 ∈ R2. For an approximation of a curve
at the degree k, the leading term of the error is therefore Ak+1X

k+1[11, 12, 37]. Thus, if we
control ||Ak+1X

k+1||, the error of approximation will be controlled. Now, if we note that:

||Ak+1X
k+1|| = (||Ak+1||

2
k+1X2)

k+1
2 ,

we can then set κk+1 = 2||Ak+1||
2
k+1 and reuse the metrics used for the linear meshing with

ρ = 1
κk+1

for radii of curvature and εk+1 = ε
2
k+1 for threshold. This way, the classic formula is

found for k = 1 and a generalization is proposed for k ≥ 2. Note that in some configurations,
the found size for the order k can be significantly lower than the found size for the order k + 1.
In this case the size given by order k + 1 is preferred.
Now , let us interest to the more complex case of the surfaces.

Case of the surface

Like for curves, the idea is to start from an intrinsic representation of the surface. For this
purpose, let us have a look at Formula (4.10). This formula gives a Taylor expansion of the gap
of a surface to its tangent plane in physical coordinates which is an intrinsic representation. As
previously, our idea is to extend this Taylor expansion to higher-order terms.
To do so, let us note (V1,0,V2,0,N0) the local basis defined for a regular point (u0, v0) of the
surface. If we note X = x− x0, Y = y − y0, Z = z − z0, we have:

X = (σ(u, v)− σ(u0, v0),V1,0),

Y = (σ(u, v)− σ(u0, v0),V2,0),

Z = (σ(u, v)− σ(u0, v0),N0).

Now, if we define:

Φ(u, v) =

(
(σ(u, v)− σ(u0, v0),V1,0)

(σ(u, v)− σ(u0, v0),V2,0)

)
,

and if (u0, v0) is a regular point of σ, then its Jacobian matrix JΦ is invertible in (u0, v0).
Consequently, the inverse function theorem can be applied and there exists a function Ψ such
that Ψ(X,Y) = Ψ(Φ(u, v)) = (u− u0, v − v0) in the vicinity of (u0, v0). Moreover, if Φ is Ck+1

then Ψ is Ck+1 and JΨ(X,Y) = JΦ(u, v)−1 with (X,Y) = Φ(u, v).
With this statement, we know that we can have a Taylor expansion of (u−u0, v−v0) with respect
to (X,Y) up to order k+ 1. For this purpose, let us compute the higher-order derivatives of Ψ.

4.4. High-order surface mesh generation 113

As σ (and therefor Φ) is an analytical function issued from a CAD model, all its derivatives can
be computed using the recipes in [Piegl 1997]. The derivatives of Ψ can be then deduced using
the following result [Encinas 2003]:

Theorem 2 (2D Faà di Bruno’s Formula). Let us consider f, g : R2 → R2 of class Ck+1 with
k + 1 ≥ |α|, then

∂|α|

∂xα
(g(f(x))) =

n∑
|σ|=1

α!
∂|σ|

∂xσ
(g(f(x)))×

∑
Eσ

2∏
i=1

∏
Aα

1

eiαi !

(
1

αi!

∂|α
i|

∂xαi
(fi(x))

)eiαi
,

where f(x) = (f1(x), f2(x)), α = (α1, α2) ∈ N2,n = |α| = α1 + α2, σ = (σ1, σ2) ∈ N2

Eσ =(e1α1 , e2α2) ∈ N2, 1 ≤ |αi| ≤ n,

 n∑
|αi|=1

eiαi = σi,

i=1,2

and 3

Aα =(α1, α2) : 1 ≤ |αi| ≤ n, i = 1, 2,
2∑
i=1

n∑
|αi|=1

eiαi .α
i = α

 .

In our case, we set g = Ψ and f = Φ and it comes that ∂|α|

∂xα (g(f(x))) = 0 for k+ 1 ≥ |α| ≥ 2.
If we consider all the n+ 1 α such that |α| = n, then we have a system of equations of the kind:

A

(
∂|α|Φ

∂xα

)
|α|=n

×
(
∂|α|Ψ

∂xα

)
|α|=n

=

F

(∂|α|Ψ
∂xα

)
|α|<n

,

(
∂|α|Φ

∂xα

)
|α|≤n

 ,

where A is (n+ 1)× (n+ 1) matrix,
(
∂|α|Ψ
∂xα

)
|α|=n

is a vector of size n+ 1 containing the n+ 1

derivatives of Ψ of order n and F is vector function of size n + 1 that can be deduced from
theorem 2. Moreover, it is shown in [Encinas 2003] that |A| = |JΦ|n, which proves that the
system has always a solution if the inverse function theorem is successfully applied.
This way, a recursive method to compute all the derivative of Ψ in (u0, v0) is set and the
computation of the Taylor expansion is therefore possible:(

u− u0

v − v0

)
=

k+1∑
n=1

∑
i+j=n

AnijX
iY j +O(||(X,Y)||k+2),

3Note that in practice, the sets Eσ and Aα can be precomputed once for all for the range of values of α and
σ that are used.

114 Chapter 4. High-order mesh visualization and adaptation

where Anij ∈ R2 and is defined thanks to the partial derivatives of Ψ.
But, as σ is Ck+1, we also have:

Z =
k+1∑
n=1

∑
i+j=n

cnij(u− u0)i(v − v0)j

+O(||((u− u0), (v − v0))||k+2).

By composition of both Taylor expansions, we then obtain a Taylor expansion of Z in (X,Y)

at the order k+ 1 ≥ 2 which is independent of the parameterization and a generalization of the
formula (4.10).
The gap to the tangent plane is thus expressed up to the order k + 1:

Z = Fk(X,Y) +Rk+1(X,Y) +O(||(X,Y)||k+2), (4.11)

where Fk is a polynomial of degree k and Rk+1 is an homogeneous polynomial of degree k+1. For
an approximation of the surface at the degree k, the leading term of the error is Rk+1(X,Y) [37].
So, if we want to control the P k approximation, we need to control |Rk+1(X,Y)|.
By applying the log-simplex algorithm explained in the previous section, we are able to find a
metric that satisfies an inequality like (4.2), that is to say, we are able to compute a matrix
Qk+1 such that:

|Rk+1(X,Y)| ≤
(

1

2
(X Y)Qk+1

(
X

Y

)) k+1
2

,

where Qk+1 is the optimal symmetric matrix (in a sense explained in the first section) that
verifies this inequality.
If we note (κi,k+1,vi,k+1)i=1,2, the eigenvalues and eigenvectors of Qk+1, we can then reuse
the metrics used for the linear meshing with ρi = 1

κi,k+1
the radii of curvature, Vi,k+1 =

(V1,0V2,0)vi,k+1 the principal directions in the tangent plane and εk+1 = ε
2
k+1 the thresh-

old. This way, the classic formula is found for k = 1 and a generalization is proposed for k ≥ 2.
Like for curves, in some configurations, found sizes for the order k can be significantly lower
than found sizes for the order k + 1. In this case sizes given by order k + 1 are preferred.

4.4.3 Meshing process

The mesh generation process is based on the classical unit-mesh concept, where a metric field,
as M2 or M̃2, is used to drive the orientation and sizing of the elements. In the context of
parametric surface meshing, several approaches are typically devised to generate a final 3D
surface mesh. Full 2D methods are a convenient way to avoid 3D surface meshing and inverse
projection to the geometry. However, a special care is needed to handle degenerated points,
periodicity, highly non-uniform (even discontinuous) parameterization or degenerated edges.
Approaches that mix 2D and 3D methods tend to reduce the impact of the parametric space to
the final mesh.

In the paper, we consider a rather classical approach. The core steps of the procedure are
decomposed as follows:

4.5. Numerical illustrations 115

1. For each Edge

1.1 Generate a 3D adaptive mesh usingM1

2. For each Face

2.1 Generate a fast (u, v)-aligned tessellation,

2.2 Compute High-order metric M̃2 on the tessellation,

2.3 Project 3D Edges of Loops as parametric curves and generate a 2D (u, v) mesh forming
the boundary of the patch,

2.4 Recycle points from the tessellation : insert points from the tessellation onto the current
mesh,

2.4 Move to 3D, convert M̃2 toM2 to adapt the mesh,

2.5 Generate high-order mesh.

The EGADS API [Haimes 2012] is used to perform the CAD linking and the planar mesh gener-
ation process is performed using a Delaunay triangulation-based algorithm[George 1998].

4.5 Numerical illustrations

Sphere example. Despite its simplicity, the unit sphere example is used to illustrate that
our error estimate is independent to the parameterization of the model. A classic boundary
representation of a sphere is to consider a surface of revolution, where the two pole maps to two
degenerated edges. In the vicinity of these points, depending on the underlying CAD kernel,
the definition of normals or more generally the definition of the derivatives of u, v are either
undefined or unstable. We illustrate the obtained Taylor expansion on the point of the sphere
using the inversion formula given by (4.11). Note that the sphere is parameterized as a circle of
revolution. Far from the pole, we have :

Z = −0.5Y 2 − 0.5X2 − 0.125Y 4

−0.25X2Y 2 − 0.125X4

−0.0625Y 6 − 0.1875X2Y 4

−0.1875X4Y 2 − 0.0625X6

+O(||(X,Y)||7).

In the vicinity of the two poles, the expansion is

Z = −0.5Y 2 − 0.5X2 − 0.125Y 4

−0.25X2Y 2 − 0.125X4

−1.80444e−9XY 4 + 1.9886e−9X3Y 2

−0.0625Y 6 − 0.187501X2Y 4

−0.187499X4X2 − 0.0625X6

+O(||(X,Y)||7).

116 Chapter 4. High-order mesh visualization and adaptation

We observe that a numerical noise appears while an almost perfect expansion is obtained as in
regular points. As expected, the second order terms reveal half the principal curvatures. This
numerical noise is a consequence of the manipulation of the huge values at stake in the vicinity
of the apex. As the value of the derivative of the parameters is going to 0, the normalization can
lead to arbitrary huge values. In the end, everything is simplified but the numerical computations
are a bit impacted by this.

Shuttle. We consider a shuttle geometry based on two NURBS of degree 3 defined by 8 (resp.
13) control points and 12 (resp. 17) knots with strong variation in the parametric space. The
P 1 , P 2 and P 3 meshes are depicted in Fig. 4.20. The error to the geometry are reported in
Table 4.2.

Order DOF Normalized Absolute

P 1 1647 254.551 197.814

P 2 1690 61.6727 58.3507

P 3 1791 7.02513 22.217

Table 4.2 – Deviation to the geometry for the shuttle geometry.

Conclusion

This Chapter is a review regarding some of the challenges related to the use of high-order meshes
and solutions to approximate PDEs.

For high-order mesh and solution rendering, an almost pixel-exact approach has been pre-
sented. It is based on the complete customization of the OpenGL pipeline. In particular, the
evaluation of nonlinear polynomials is computed exactly directly on the GPU. To approximate
the nonlinear mapping of curved elements, an automatic tessellation is performed directly on
the GPU. Exact representation is obtained for linear elements independently of the order of
the solution. This approach also offer a low memory footprint as the initial high-order mesh or
solution is never subdivided on the CPU.

To extend anisotropic mesh adaptation to high-order solutions, an iterative algorithm has
been devised to derive a local optimal metric to approximate a given (k+ 1) differential form of
degree k. At each step, a linear log-simplex problem is solved in the logarithm space of metric
fields. This optimal local metric is then globally optimized via a calculus of variations to obtain
the optimal distribution of the DoF in Lp norm. This strategy has been tested on various 3D
examples showing an optimal rate of convergence. For all the adaptive cases, the adapted meshes
have a lower level error and reach faster the asymptotic rate of convergence.

Generating high-order curved surface meshes from a geometry requires the derivation of
intrinsic quantities of the surface in order to guarantee the approximation. In this Chapter, we
have used a Taylor expansion coupled with an inversion formula to derive a local approximation
of the underlying surface in the Frénet frame. To extend the notion of principal curvature, a
log-simplex approach is used to approximate optimally the variation of the polynomial by a
quadratic function. The eigenvalues and eigenvectors can be viewed as "high-order" curvatures.

4.5. Numerical illustrations 117

Figure 4.20 – P 1 (top), P 2 (middle) and P 3 (bottom) point-wise distance to the shuttle geom-
etry.

118 Chapter 4. High-order mesh visualization and adaptation

As a metric field is naturally derived, these estimates can be used directly in any adaptive
anisotropic mesh generation process.

Chapter 5

Conclusions and perspectives

I reviewed in this manuscript recent developments for mesh adaptation and error estimation
employed within an anisotropic adaptive process. The underlying goal is to obtain high-fidelity
numerical prediction of complex nonlinear PDEs.

In that respect, the metric-based framework has proven to be a key component to develop effi-
cient error estimations and design adaptive meshing algorithms. From an error estimate point of
view, the metric-based framework allows to define a complete continuous setting. Interpolation
error estimates are then sought continuously through a calculus of variation. This approach is
reviewed in Chapter 1 to derive multi-scale error estimates that controls the interpolation in
Lp norm. Such estimates were then extended for very high order interpolation in Chapter 4.
The continuous mesh framework has been extended by several groups to control high-order
approximation error [Yano 2012], h-p mesh optimization [Ringue 2017] or derived h-p error esti-
mates [Dolejsi 2015, Rangarajan 2018]. From a practical point of view, the concept of unit mesh
with respect to a metric field allows to generate an anisotropic mesh. The discrete (computa-
tional) mesh is then a discrete representation of the continuous mesh. A compound of simple
operators (insertion, collapses, swaps), monitored by a quality function, provides a highly robust
meshing process. Indeed, as mesh adaptation is a nonlinear process, meshes and solutions are
converged to a fix point. A single failure in a mesh generation completely broke the adaptive
prediction : no mesh, no solution. Examples of Chapter 1 exhibit an early capturing of the un-
derlying physical phenomena both for steady and unsteady simulations. The direct sonic boom
prediction is a perfect illustration of one of the benefits of mesh adaptation : optimal distribu-
tion of the degrees of freedom. If a uniform mesh were generated with the accuracy obtained
on the ground, 1018 tetrahedra would have been needed, leading to more than 1 000 years of
computing . . . The adaptive prediction is around 4 hours on a standard desktop computer. If
most of the problems in this thesis are related to CFD, the concepts introduced in Chapter 1
can be studied for additional sets of physical problems or numerical scheme. For instance, the
continuous mesh theory was extended to boundary element methods [4, 6]. In that case, all the
developments are extended to work on solutions only known at the boundary. When applied to
wave scattering frequency problems, mesh adaptation has proven to recover an optimal order
of convergence for boundary solutions with low regularity. We then note a strong analogy with
fluid dynamics where second order spatial accuracy is recovered for flows with shocks [62]. In
Fig. 5.1, we illustrate the scattering at multiple frequency by a cavity. The relative L2 error is
compared to uniform refinements.

The second component improved in this thesis is the mesh generation mechanism itself. In
Chapter 2, the cavity-based operator was introduced to offer a robust and unique operator in
an adaptive context. It can be easily extended to generate hybrid meshes. Complex operators

120 Chapter 5. Conclusions and perspectives

Figure 5.1 – Scattering by a sound-soft cube with cavity, mesh and solution (left) and rate of
convergence (right) when compared with uniform refinements.

are then automatically defined thanks to cavity correction algorithms. In addition to a drastic
gain in CPU times (40 times faster than the baseline adaptive algorithm of Chapter 1), it
has the required robustness to handle highly complex geometries and high levels of anisotropy
(O(1−105)) required for RANS simulations. This opens the way for mesh generation algorithms
having the ability to drastically improve the quality of the meshes. Two techniques, metric-
aligned and metric-orthogonal approaches, have been reviewed in Chapter 3. These techniques
extends to anisotropy traditional advancing methods [Borouchaki 2000a, Remacle 2012]. The
process relies on a global process where points have to be placed in preferred directions to favor
alignment, orthogonality and quality. These preferred directions are obtained from the input
metric field. The main advantage of this approach is that this step is completely decoupled
from the point insertion problem. A second improvement concerns the generation of large
size meshes. An original parallel mesh generation method was introduced. It relies on (i) a
metric-based static load-balancing, (ii) hierarchical mesh partitioning techniques to (re)split
the (complex) interfaces meshes, (iii) a fast, robust and generic sequential cavity-based mesh
modification kernel. Again, we observe the high benefit of adopting a continuous and discrete
representations of meshes. Again, the metric-based framework offers a convenient theoretical
background : to define directions of interest for the metric-align and metric-orthogonal approach
and to define optimal load balancing estimates for the parallel process.

The mesh adaptation process presented in the thesis has a sufficient level of maturity to tackle
industrial problems. In this respect, we illustrate in Fig. 5.2 some mesh adaptation techniques for
incompressible flows or bi-fluid simulations, all courtesy of Lemma company. From an industrial
perspective, mesh adaptation defines a process that helps to converge to a solution of high
fidelity, without requiring the needs of experts engineers to design tailored meshes.

Future work

Future research work will be directed at different levels. The first one is related to the im-
provements of the error estimates in particular their reliability. The second one focuses on the
improvement and development of new meshing algorithms for adaptive high-order curved mesh
and parallel strategies.

121

Figure 5.2 – Examples of mesh adaptation for incompressible flows performed by Lemma :
Ahmed body (top) and Perrin F1 (bottom). Once an initial mesh and flow conditions are set
up, no user intervention is required.

Norm oriented error estimates. The classical error estimates (Hessian-based in Chapter 1
and 4 or goal-oriented in the numerical section of Chapter 2) address specifically one goal or
one sensor. In particular, the implicit error Wh − ΠhW is not controlled. However, this term
naturally arises when the functional of interest is for instance the norm ‖ΠhW −Wh‖L2 . One
step is then to estimate the implicit error. This error can be interpreted as a point-wise error
that estimates the point-wise error between the exact solution and the solution provided by the
numerical scheme. First developments have been done in the case of inviscid flows [3, 42]. To do
so, we estimate the defect, δ, of the continuous solution when applied to the numerical solution.
In the framework of the Euler equations, we have

div(F (Wh)) = δ ≈ 0.

To estimate δ, the continuous flux function F is evaluated on a finer mesh. Then we compute
Fh/2

(
Πh/2Wh

)
which is equivalent to one solver flux evaluation. This flux is accumulated back

on the current mesh, following geometric multi-grid methods, defining a source term:

Spost = Ah/2→h(Fh/2(Πh/2Wh)),

where Ah/2→h is the operator consisting in localizing the point of the finer grid h/2 on to the
finite volume cell of coarser grid h and accumulating the flux. The corrected solution is then
solution of:

div(Fh(Wc)) = Spost,

122 Chapter 5. Conclusions and perspectives

starting with Wc = Wh. Note that the finer grid is never generated from a practical point
of view, only a local subdivision is used. In addition, the computation of Spost is naturally
highly parallel. Contrary to the goal-oriented mesh adaptation, the functional may be now any
function of the approximation error. A particular case involves multiple functionals of interest
to be minimized simultaneously. For instance, instead of the above δj, we can minimize the
semi-norm-like functional:

j(Wh) = (drag(W)− drag(Wh))2 + (lift(W)− lift(Wh))2

while the goal-oriented should use two functionals, one for drag and one for lift or specify a
combination of them. An example of correctors is depicted in Fig. 5.3, where the point implicit
error is depicted as error bars on top of pressure extraction. We observe that the uncertainty
on the pressure distribution decreases when a sequence of adaptive meshes is used, while this
uncertainty remains almost unchanged on a sequence a tailored refined meshes. However, several
challenges remains to obtain an accurate corrector near viscous body for RANS simulations.
Indeed, the combination of complex geometries and strong anisotropy requires to design specific
strategies to obtain an accurate defect.

High-order curved mesh adaptation. In Chapter 3, the aligned and orthogonal approaches
have proved to increase the quality of the generated meshes by using additional features of
the input metric field, like its natural alingnent and orthogonality. In a more general set-
ting, new theoretical developments on Riemannian metric fields are necessary to extract per-
tinent mesh-curvature information, orthogonality, alignment and natural connectivity informa-
tion. This information, that have not been used so far in traditional meshing techniques, will
guide modern mesh generation algorithms to obtain high-quality curved, hybrid and adapted
meshes. Most of the approaches to generate high-order curved meshes rely either on solv-
ing PDEs [Abgrall 2014, Aparicio-Estrems 2019, Fortunato 2016, Karman 2016, Moxey 2016,
Roca 2012, Ruiz-Gironès 2016a] or defining specific optimizations to move the points in the do-
main. For all cases, these techniques focus on uniform meshes and their extension to generate
anisotropic meshes is not natural. It is then necessary to extend both the theoretical back-
ground of unit-mesh and mesh modification operators to operate on anisotropic curved meshes.
For adapted and curved meshes, the advancing-point technique of Chapter 3 seems an interest-
ing alternative as the density of the point and direction of propagation can be controlled in a
curved manner. A similar global approach is now considered to generate hexahedral meshes with
the definition of a frame field [Beaufort 2017], however the developments are still for uniform
meshes and no effort is put in the connecting phase of these points [Sokolov 2017]. In Fig. 5.4,
we illustrate a simple approach where curved elements are generated by considering the variation
of the metric field. The length of the edges is then optimized in the Riemannian field. In terms
of parallelism, the approach of Chapter 3 allows to generate meshes where the memory is the
main limitation. However, for classical multi-core architectures, a fine-grained parallelism seems
required for efficiency [Remacle 2015]. Developing a parallel kernel of the cavity operators is
then a natural research axis.

123

Figure 5.3 – Nonlinear corrector predictions of the pressure on tailored meshes (left) and adapted
goal-oriented meshes (right).

124 Chapter 5. Conclusions and perspectives

Metric tensor P1 induced curved P2

Figure 5.4 – Illustration on a first attempt of an induced curvature implied by the metric tensor
variation in 2D.

Bibliography

[Abgrall 2001] R. Abgrall. Toward the Ultimate Conservative Scheme: Following the Quest.
Journal of Computational Physics, vol. 167, no. 2, pages 277 – 315, 2001.

[Abgrall 2014] R. Abgrall, C. Dobrzynski and A. Froehly. A method for computing curved meshes
via the linear elasticity analogy, application to fluid dynamics problems. International
Journal for Numerical Methods in Fluids, vol. 76, no. 4, pages 246–266, 2014.

[Alauzet 2006] F. Alauzet, X. Li, E. Seegyoung Seol and M.S. Shephard. Parallel anisotropic
3D mesh adaptation by mesh modification. Eng. w. Comp., vol. 21, no. 3, pages 247–258,
2006.

[Alauzet 2010] F. Alauzet. Size gradation control of anisotropic meshes. Finite Elem. Anal.
Des., vol. 46, pages 181–202, 2010.

[Alauzet 2011] F. Alauzet and G. Olivier. Extension of Metric-Based Anisotropic Mesh Adapta-
tion to Time-Dependent Problems Involving Moving Geometries. In 49th AIAA Aerospace
Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Ameri-
can Institute of Aeronautics and Astronautics, 2014/03/26 2011.

[Alleaume 2008] A. Alleaume, L. Francez, M. Loriot and N. Maman. Automatic tetrahedral
out-of-core meshing. In M. L. Brewer and D. Marcum, editeurs, Proceedings of the 16th
International Meshing Roundtable, pages 461–476. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[Ansys Inc.] Ansys Inc. Ensight. https://www.ansys.com/en/products/platform/
ansys-ensight.

[Aparicio-Estrems 2019] G. Aparicio-Estrems, A. Gargallo-Peiró and X. Roca. Defining a
Stretching and Alignment Aware Quality Measure for Linear and Curved 2D Meshes.
In 27th International Meshing Roundtable, pages 37–55, Cham, 2019. Springer Interna-
tional Publishing.

[Arsigny 2006] V. Arsigny, P. Fillard, X. Pennec and N. Ayache. Log-Euclidean Metrics for Fast
and Simple Calculus on Diffusion Tensors. Magn. Reson. Med., vol. 56, no. 2, pages
411–421, 2006.

[Aubry 2009] R. Aubry and R. Löhner. Generation of viscous grids at ridges and corners.
International Journal for Numerical Methods in Engineering, vol. 77, no. 9, pages 1247–
1289, 2009.

[Aubry 2011] R. Aubry, G. Houzeaux and M. Vázquez. A surface remeshing approach. Interna-
tional Journal for Numerical Methods in Engineering, vol. 85, no. 12, pages 1475–1498,
2011.

https://www.ansys.com/en/products/platform/ansys-ensight
https://www.ansys.com/en/products/platform/ansys-ensight

126 Bibliography

[Aubry 2015] R. Aubry, S. Dey, E.L. Mestreau, B.K. Karamete and D. Gayman. A robust
conforming NURBS tessellation for industrial applications based on a mesh generation
approach. Computer-Aided Design, vol. 63, pages 26 – 38, 2015.

[Aubry 2016] R. Aubry, S. Dey, K. Karamete and E. Mestreau. Smooth anisotropic sources with
application to three-dimensional surface mesh generation. Engineering with Computers,
vol. 32, no. 2, pages 313–330, 2016.

[Baffet 2019] D. H. Baffet, M. J. Grote, S. Impériale and M. Kachanovska. Energy Decay and
Stability of a Perfectly Matched Layer For the Wave Equation. Journal of Scientific
Computing, Nov 2019.

[Baker 1987] T. Baker. Three-dimensional mesh generation by triangulation of arbitrary point
sets. AIAA Paper , vol. 1987-1124, 1987.

[Bassi 1997] F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of
the 2D Euler equations. Journal of computational physics, vol. 138, no. 2, pages 251–285,
1997.

[Beaufort 2017] P.-A. Beaufort, J. Lambrechts, F. Henrotte, C. Geuzaine and J.-F. Remacle.
Computing cross fields A PDE approach based on the Ginzburg-Landau theory. Procedia
Engineering, vol. 203, pages 219–231, 2017.

[Borouchaki 2000a] H. Borouchaki, P. Laug and P. L. George. Parametric surface meshing
using a combined advancing-front generalized Delaunay approach. International Journal
for Numerical Methods in Engineering, vol. 49, no. 1-2, pages 233–259, 2000.

[Borouchaki 2000b] H. Borouchaki, P. Laug and P.L. George. Parametric surface meshing us-
ing a combined advancing-front – generalized-Delaunay approach. Int. J. Numer. Meth.
Engng, vol. 49, no. 1-2, pages 233–259, 2000.

[Bottasso 2002] C.L. Bottasso and D. Detomi. A procedure for tetrahedral boundary layer mesh
generation. Engineering Computations, vol. 18, pages 66–79, 2002.

[Bottasso 2004] C.L. Bottasso. Anisotropic mesh adaption by metric-driven optimization. Int.
J. Numer. Meth. Engng, vol. 60, pages 597–639, 2004.

[Bowyer 1981] A. Bowyer. Computing Dirichlet tessellations. Comput. J., vol. 24, no. 2, pages
162–166, 1981.

[Cao 2005] W. Cao. On the Error of Linear Interpolation and the Orientation, Aspect Ratio,
and Internal Angles of a Triangle. SIAM J. Numer. Anal., vol. 43, no. 1, pages 19–40,
2005.

[Cao 2007] W. Cao. An interpolation error estimate on anisotropic meshes in Rn and optimal
metrics for mesh refinement. SIAM J. Numer. Anal., vol. 45, no. 6, pages 2368–2391
(electronic), 2007.

Bibliography 127

[Cao 2008] W. Cao. An interpolation error estimate in R2 based on the anisotropic measures
of higher order derivatives. Math. Comp., vol. 77, no. 261, pages 265–286 (electronic),
2008.

[Castro-Díaz 1997] M.J. Castro-Díaz, F. Hecht, B. Mohammadi and O. Pironneau. Anisotropic
Unstructured Mesh Adaptation for Flow Simulations. Int. J. Numer. Meth. Fluids, vol. 25,
pages 475–491, 1997.

[Chen 2007] L. Chen, P. Sun and J. Xu. Optimal anisotropic meshes for minimizing interpolation
errors in Lp-norm. Math. Comp., vol. 76, no. 257, pages 179–204, 2007.

[Chernikov 2010] A.N. Chernikov and N.P. Chrisochoides. A template for developing next gen-
eration parallel Delaunay refinement methods. Finite Elements in Analysis and Design,
vol. 46, no. 1–2, pages 96 – 113, 2010. Mesh Generation - Applications and Adaptation.

[Ciarlet 1978] P.G. Ciarlet. The finite element method for elliptic problems. North-Holland,
Amsterdam, 1978.

[Compère 2010] G. Compère, J.-F. Remacle, J. Jansson and J. Hoffman. A mesh adaptation
framework for dealing with large deforming meshes. Int. J. Numer. Meth. Engng, vol. 82,
pages 843–867, 2010.

[Coupez 2000] T. Coupez, H. Digonnet and R. Ducloux. Parallel meshing and remeshing. Ap-
plied Mathematical Modelling, vol. 25, no. 2, pages 153 – 175, 2000. Dynamic load
balancing of mesh-based applications on parallel.

[Coupez 2011] T. Coupez. Metric construction by length distribution tensor and edge based error
for anisotropic adaptive meshing. Journal of Computational Physics, vol. 230, no. 7, pages
2391 – 2405, 2011.

[Cournède 2006] P.-H. Cournède, B. Koobus and A. Dervieux. Positivity statements for a Mixed-
Element-Volume scheme on fixed and moving grids. European Journal of Computational
Mechanics, vol. 15, no. 7-8, pages 767–798, 2006.

[Csimsoft] Csimsoft. Trelis. https://www.csimsoft.com/trelis.

[Dantzig 2003] G. B. Dantzig and M. N. Thapa. Linear programming 2: Theory and extensions.
Springer-Verlag, 2003.

[De Cougny 1999] H. L. De Cougny and M. S. Shephard. Parallel refinement and coarsening of
tetrahedral meshes. International Journal for Numerical Methods in Engineering, vol. 46,
no. 7, pages 1101–1125, 1999.

[de Siqueira 2010] D. de Siqueira, J. B. Cavalcante-Neto, C. A. Vidal and R. J. da Silva. A
Hierarchical Adaptive Mesh Generation Strategy for Parametric Surfaces Based on Tree
Structures. In 2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images, pages
79–86. IEEE, 2010.

https://www.csimsoft.com/trelis

128 Bibliography

[de Siqueira 2014] D. M. B. de Siqueira, M. O. Freitas, J. B. Cavalcante-Neto, C. A. Vidal and
R. J. da Silva. An Adaptive Parametric Surface Mesh Generation Method Guided by
Curvatures. In Proceedings of the 22nd International Meshing Roundtable, 2014.

[Dey 1999] S. Dey, R. M. O’bara and M. S. Shephard. Curvilinear Mesh Generation in 3D. In
Proceedings of the 7th International Meshing Roundtable, pages 407–417, 1999.

[Digonnet 2013] Hugues Digonnet, Luisa Silva and Thierry Coupez. Massively parallel compu-
tation on anisotropic meshes. In 6th International Conference on Adaptive Modeling
and Simulation, pages 199–211, Lisbon, Portugal, June 2013. International Center for
Numerical Methods in Engineering.

[Distene] Distene. MeshGems suite. http://www.meshgems.com/.

[do Carmo 1976] M. do Carmo. Differential geometry of curves and surfaces. Prentice Hall,
1976.

[Dobrzynski 2008] C. Dobrzynski and P.J. Frey. Anisotropic Delaunay Mesh Adaptation for
Unsteady Simulations. In Proceedings of the 17th International Meshing Roundtable,
pages 177–194. Springer, 2008.

[Dolejsi 2015] V. Dolejsi. Anisotropic hp-adaptive discontinuous Galerkin method for the numer-
ical solution of time dependent PDEs. Applied Mathematics and Computation, vol. 267,
pages 682 – 697, 2015. The Fourth European Seminar on Computing (ESCO 2014).

[Dompierre 1999] J. Dompierre, P. Labbé, M.-G. Vallet and R. Camarero. How to Subdivide
Pyramids, Prisms, and Hexahedra into Tetrahedra. In Proceedings of the 8th Interna-
tional Meshing Roundtable, pages 195–204, 1999.

[Encinas 2003] L. H. Encinas and J. M. Masque. A short proof of the generalized Faà di Bruno’s
formula. Applied mathematics letters, vol. 16, no. 6, pages 975–979, 2003.

[Faà di Bruno 1857] F. Faà di Bruno. Note sur une nouvelle formule de calcul différentiel.
Quarterly J. Pure Appl. Math, vol. 1, no. 359-360, page 12, 1857.

[Fortunato 2016] M. Fortunato and P.-O. Persson. High-order Unstructured Curved Mesh Gen-
eration Using the Winslow Equations. J. Comput. Phys., vol. 307, pages 1–14, February
2016.

[Foteinos 2012] P. Foteinos and N.P. Chrisochoides. Dynamic Parallel 3D Delaunay Triangula-
tion. In WilliamRoshan Quadros, editeur, Proceedings of the 20th International Meshing
Roundtable, pages 3–20. Springer Berlin Heidelberg, 2012.

[Freitag 1997] L. Freitag and C. Olliver Gooch. Tetrahedral mesh improvement using swapping
and smoothing. Int. J. Numer. Meth. Engng, vol. 40, no. 21, pages 3979–4002, 1997.

[Frey 2000] P. Frey. About surface remeshing. In Proceedings of the 15th International Meshing
Roundtable, pages 123–136. Springer, 2000.

http://www.meshgems.com/

Bibliography 129

[Frey 2001a] P. J. Frey. Medit: An interactive mesh visualization software, INRIA Technical
Report RT0253, 2001.

[Frey 2001b] P.J. Frey. Yams, A fully automatic adaptive isotropic surface remeshing procedure.
RT-0252, INRIA, November 2001.

[Frey 2003] P. Frey and H. Borouchaki. Surface meshing using a geometric error estimate. Int.
J. Numer. Meth. Engng, vol. 58, no. 2, pages 227–245, 2003.

[Frey 2005] P.J. Frey and F. Alauzet. Anisotropic mesh adaptation for CFD computations.
Comput. Methods Appl. Mech. Engrg., vol. 194, no. 48-49, pages 5068–5082, 2005.

[Frey 2008] P. Frey and P.-L. George. Mesh generation. Application to finite elements. ISTE
Ltd and John Wiley & Sons, 2nd édition, 2008.

[Gargallo-Peiró 2013] A. Gargallo-Peiró, X. Roca, J. Peraire and J. Sarrate. Defining quality
measures for mesh optimization on parameterized CAD surfaces. In Proceedings of the
21st International Meshing Roundtable, pages 85–102. Springer, 2013.

[Garimella 2000] R.V. Garimella and M.S. Shephard. Boundary layer mesh generation for vis-
cous flow simulations. Int. J. Numer. Meth. Fluids, vol. 49, pages 193–218, 2000.

[George 1990] P.L. George, F. Hecht and E. Saltel. Fully Automatic Mesh Generator for 3D
Domains of Any Shape. Impact of Comuting in Science and Engineering, vol. 2, pages
187–218, 1990.

[George 1998] P.L. George and H. Borouchaki. Delaunay triangulation and meshing : applica-
tion to finite elements. Hermès Science, Paris, Oxford, 1998.

[George 2003a] P. L. George, H. Borouchaki and H. Saltel. ’Ultimate’ robustness in meshing
an arbitrary polyhedron. International Journal for Numerical Methods in Engineering,
vol. 58, no. 7, pages 1061–1089, 2003.

[George 2003b] P.L. George. Gamanic3d, Adaptive anisotropic tetrahedral mesh generator. Tech-
nical Note, INRIA, 2003.

[George 2003c] P.L. George and H. Borouchaki. Back to Edge Flips in 3 Dimensions. In Pro-
ceedings of the 12th International Meshing Roundtable, pages 393–402, Santa Fe, NM,
USA, 2003.

[George 2019] P. L. George, H. Borouchaki, F. Alauzet, P. Laug, A. Loseille and L. Maréchal.
Meshing, Geometric Modeling and Numerical Simulation 2: Metrics, Meshes and Mesh
Adaptation. John Wiley & Sons, 2019.

[Geuzaine 2009] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh genera-
tor with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, vol. 79, no. 11, pages 1309–1331, 2009.

130 Bibliography

[Haimes 2012] R. Haimes and M. Drela. On The Construction of Aircraft Conceptual Geom-
etry for High-Fidelity Analysis and Design. In 50th AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition, 2012.

[Hartmann 2016] R. Hartmann and T. Leicht. Generation of unstructured curvilinear grids and
high-order discontinuous Galerkin discretization applied to a 3D high-lift configuration.
International Journal for Numerical Methods in Fluids, vol. 82, no. 6, pages 316–333,
2016.

[Hecht 1998] F. Hecht. BAMG: bidimensional Anisotropic Mesh Generator. Available from
http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm, INRIA-Rocquencourt,
France, 1998.

[Hecht 2014] F. Hecht and R. Kuate. An approximation of anisotropic metrics from higher order
interpolation error for triangular mesh adaptation. J. Comput. Appl. Math., vol. 258,
pages 99–115, 2014.

[Hermeline 1982] F. Hermeline. Triangulation automatique d’un polyèdre en dimension N .
RAIRO - Analyse numérique, vol. 16, no. 3, pages 211–242, 1982.

[Hunton 1973] L.W. Hunton, R.M. Hicks and J.P. Mendoza. Some effects of wing planform on
sonic boom. TN. D-7160, Nasa, 1973.

[Ims 2019] J. Ims and Z. J. Wang. Automated low-order to high-order mesh conversion. Engi-
neering with Computers, vol. 35, no. 1, pages 323–335, Jan 2019.

[Ing.] Lemma Ing. ANANAS. http://www.lemma-ing.com.

[Intelligent Light] Intelligent Light. FieldView. http://www.ilight.com/en/products/
fieldview-18.

[Ito 2002] Y. Ito and K. Nakahashi. Unstructured mesh generation for viscous flow computations.
Proceedings of the 11th International Meshing Roundtable, pages 367–377, 2002.

[Ito 2006] Y. Ito and K. Nakahashi. An approach to generate high quality unstructured hybrid
meshes. 44th AIAA Aerospace Sciences Meeting, Jan 2006.

[Ito 2007] Y. Ito, A.M. Shih, A.K. Erukala, B.K. Soni, A.N. Chernikov, N.P.Chrisochoides and
K. Nakahashi. Parallel Unstructured Mesh Generation by an Advancing Front Method.
Math. Comput. Simul., vol. 75, no. 5-6, pages 200–209, September 2007.

[Johnson 1985] C. Johnson, U. Navert and J. Pitkaranta. Finite element methods for linear
hyperbolic problems. Math. Comp., vol. 69, pages 25–39, 1985.

[Jones 2006] W.T. Jones, E.J. Nielsen and M.A. Park. Validation of 3D Adjoint Based Error
Estimation and Mesh Adaptation for Sonic Boom Reduction. In 44th AIAA Aerospace
Sciences Meeting and Exhibit, AIAA-2006-1150, Reno, NV, USA, Jan 2006.

http://www.ilight.com/en/products/fieldview-18
http://www.ilight.com/en/products/fieldview-18

Bibliography 131

[Karman 2016] S. L. Karman, J T. Erwin, R. S. Glasby and D. Stefanski. High-Order Mesh
Curving Using WCN Mesh Optimization. In 46th AIAA Fluid Dynamics Conference,
AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics, 2016.

[Karypis 1998] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. SIAM Journal on Scientific Computing, vol. 20, no. 1, pages
359–392, 1998.

[Kirkpatrick 1983] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by Simulated
Annealing. Science, vol. 220, no. 4598, pages 671–680, 1983.

[KitWare Inc.] KitWare Inc. ParaView. https://www.paraview.org/.

[Krause 2003] Jens Krause and Paul Louis George. Construction d’un maillage 3-D anisotrope
localement structuré. Rapport de recherche RR-4834, INRIA, 2003.

[Lachat 2014] C. Lachat, C. Dobrzynski and F. Pellegrini. Parallel mesh adaptation using paral-
lel graph partitioning. In 5th European Conference on Computational Mechanics (ECCM
V), volume 3 of Minisymposia in the frame of ECCM V, pages 2612–2623, Barcelone,
Spain, July 2014. IACM & ECCOMAS, CIMNE - International Center for Numerical
Methods in Engineering. ISBN 978-84-942844-7-2.

[Laug 2003] P. Laug and H. Bourochaki. BL2D-V2, Mailleur bidimensionnel adaptatif. RT-0275,
INRIA, 2003.

[Laug 2010] P. Laug. Some aspects of parametric surface meshing. Finite Elements in Analysis
and Design, vol. 46, no. 1–2, pages 216 – 226, 2010. Mesh Generation - Applications and
Adaptation.

[Lenoir 1986] M. Lenoir. Optimal isoparametric finite elements and error estimates for domains
involving curved boundaries. SIAM journal on numerical analysis, vol. 23, no. 3, pages
562–580, 1986.

[Li 2004] X. Li, J.-F. Remacle, N. Chevaugeon and M.S. Shephard. Anisotropic Mesh Gradation
Control. In Proceedings of the 13th International Meshing Roundtable, pages 401–412.
Springer, 2004.

[Li 2005] X. Li, M.S. Shephard and M.W. Beal. 3D anisotropic mesh adaptation by mesh mod-
ification. Comput. Methods Appl. Mech. Engrg., vol. 194, no. 48-49, pages 4915–4950,
2005.

[Lo 2015] D. S.H. Lo. Finite element mesh generation. CRC Press, 2015.

[Löhner 1988a] R. Löhner and P. Parikh. Generation of three-dimensional unstructured grids
by the advancing-front method. International Journal for Numerical Methods in Fluids,
vol. 8, no. 10, pages 1135–1149, 1988.

[Löhner 1988b] R. Löhner and P. Parikh. Three-dimensionnal grid generation by the advancing-
front method. Int. J. Numer. Meth. Fluids, vol. 8, no. 8, pages 1135–1149, 1988.

https://www.paraview.org/

132 Bibliography

[Löhner 1992] R. Löhner, J. Camberos and M. Merriam. Parallel unstructured grid generation.
Computer Methods in Applied Mechanics and Engineering, vol. 95, no. 3, pages 343 –
357, 1992.

[Löhner 1993] R. Löhner. Matching semi-structured and unstructured grids for Navier-Stokes
calculations. AIAA Paper , vol. 1993-3348, 1993.

[Löhner 1999] R. Löhner. Generation of unstructured grids suitable for RANS calculations.
AIAA Paper , vol. 1999-0662, 1999.

[Löhner 2001] R. Löhner. Applied CFD techniques. An introduction based on finite element
methods. John Wiley & Sons, Ltd, New York, 2001.

[Löhner 2013] R. Löhner. A 2nd Generation Parallel Advancing Front Grid Generator. In X. Jiao
and J.-C. Weill, editeurs, Proceedings of the 21st International Meshing Roundtable,
pages 457–474. Springer Berlin Heidelberg, 2013.

[Löhner 2014] R. Löhner. Recent Advances in Parallel Advancing Front Grid Generation.
Archives of Computational Methods in Engineering, vol. 21, no. 2, pages 127–140, 2014.

[Loseille 2016] A. Loseille, H. Guillard and A. Loyer. An introduction to Vizir: an interactive
mesh visualization and modification software. EOCOE, Rome, Italy, 2016.

[Luo 1998] H. Luo, J.D. Baum and R. Löhner. A fast, matrix-free implicit method for compress-
ible flows on unstructured grids. J. Comp. Phys., vol. 146, pages 664–690, 1998.

[Marcum 1996] D. L. Marcum. Adaptive Unstructured Grid Generation for Viscous Flow Ap-
plications. AIAA Journal, vol. 34, no. 8, pages 2440–2443, 1996.

[Marcum 2001] D. L. Marcum. Efficient Generation of High-Quality Unstructured Surface and
Volume Grids. Engrg. Comput., vol. 17, pages 211–233, 2001.

[Marcum 2013] D. L. Marcum and F. Alauzet. Unstructured Mesh Generation Using Advancing
Layers and Metric-Based Transition for Viscous Flowfields. In 21st AIAA Computational
Fluid Dynamics Conference. 2013.

[Marcum 2014] D. Marcum and F. Alauzet. Aligned Metric-Based Anisotropic Solution Adaptive
Mesh Generation. In Proceedings of the 23rd International Meshing Roundtable. 2014.

[Maunoury 2018] M. Maunoury, C. Besse, V. Mouysset, S. Pernet and P.-A. Haas. Well-suited
and adaptive post-processing for the visualization of hp simulation results. Journal of
Computational Physics, vol. 375, pages 1179 – 1204, 2018.

[Maunoury 2019] M. Maunoury. Méthode de visualisation adaptée aux simulations d’ordre élevé.
Application à la compression-reconstruction de champs rayonnés pour des ondes har-
moniques. Ph.D. Thesis, Université de Toulouse, February 2019.

[Mavriplis 1995] D.J. Mavriplis. An advancing front Delaunay triangulation algorithm designed
for robustness. J. Comp. Phys., vol. 117, pages 90–101, 1995.

Bibliography 133

[Michal 2011] T. Michal and J. Krakos. Anisotropic mesh Adaptation through edge primitive
operations. AIAA Paper , vol. 2011-0159, 2011.

[Miranda 2002] A. C. Miranda and L. F. Martha. Mesh generation on high-curvature surfaces
based on a background quadtree structure. In Proceedings of the 11th International Mesh-
ing Roundtable, 2002.

[Moxey 2016] D. Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin and J. Peirò. High-order curvi-
linear meshing using a thermo-elastic analogy. Computer-Aided Design, vol. 72, pages
130 – 139, 2016.

[Nelson 2011] B. Nelson, R. Haimes and R. M. Kirby. GPU-Based Interactive Cut-Surface Ex-
traction From High-Order Finite Element Fields. IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 12, pages 1803–11, 2011.

[Nelson 2012] B. Nelson, E. Liu, R. M. Kirby and R. Haimes. ElVis: A System for the Accurate
and Interactive Visualization of High-Order Finite Element Solutions. IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 12, pages 2325–2334, 2012.

[Ovcharenko 2013] A. Ovcharenko, K. Chitale, O. Sahni, K. E. Jansen and M. S. Shephard.
Parallel adaptive boundary layer meshing for cfd analysis, pages 437–455. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[Özturan 1994] C. Özturan, H.L. deCougny, M.S. Shephard and J.E. Flaherty. Parallel adaptive
mesh refinement and redistribution on distributed memory computers. Computer Methods
in Applied Mechanics and Engineering, vol. 119, no. 1–2, pages 123 – 137, 1994.

[Pain 2001] C.C Pain, A.P. Humpleby, C.R.E. de Oliveira and A.J.H. Goddard. Tetrahedral
mesh optimisation and adaptivity for steady-state and transient finite element calcula-
tions. Comput. Methods Appl. Mech. Engrg., vol. 190, pages 3771–3796, 2001.

[Peiró 2015] J. Peiró, D. Moxey, B. Jordi, S. J. Sherwin, B.W. Nelson, R. M. Kirby and
R. Haimes. High-Order Visualization with ElVis. In Notes on Numerical Fluid Me-
chanics and Multidisciplinary Design, pages 521–534. Springer International Publishing,
2015.

[Peraire 1987] J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz. Adaptive Remeshing
for Compressible Flow Computations. J. Comput. Phys., vol. 72, pages 449–466, 1987.

[Persson 2009] P.-O. Persson and J. Peraire. Curved mesh generation and mesh refinement using
Lagrangian solid mechanics. In 47th AIAA Aerospace Sciences Meeting including The
New Horizons Forum and Aerospace Exposition, page 949, 2009.

[Piegl 1997] L. Piegl and W. Tiller. The nurbs book (2nd ed.). Springer-Verlag New York, Inc.,
New York, NY, USA, 1997.

[Pirzadeh 1994] S. Pirzadeh. Viscous unstructured three dimensional grids by the advancing-
layers method. 32th AIAA Aerospace Sciences Meeting, Jan 1994.

134 Bibliography

[PointWise] PointWise. Structured, Hybrid, and Overset Meshing. http://www.pointwise.
com/.

[Rangarajan 2018] A. M. Rangarajan, A. Balan and G. May. Mesh Adaptation and Optimization
for Discontinuous Galerkin Methods Using a Continuous Mesh Model. In AIAA Modeling
and Simulation Technologies Conference. 2018.

[Reid 1978] L. Reid and R. D. Moore. Performance of single-stage axial-flow transonic com-
pressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design
pressure ratio of 1.82. 1978.

[Remacle 2005] J.-F. Remacle, X. Li, M.S. Shephard and J.E. Flaherty. Anisotropic adaptive
simulation of transient flows using discontinuous Galerkin methods. Int. J. Numer. Meth.
Engng, vol. 62, pages 899–923, 2005.

[Remacle 2007] J.-F. Remacle, N. Chevaugeon, E. Marchandise and C. Geuzaine. Efficient
visualization of high-order finite elements. International Journal for Numerical Methods
in Engineering, vol. 69, no. 5, pages 750–771, 2007.

[Remacle 2012] J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen and
C. Geuzaine. Blossom-Quad: A non-uniform quadrilateral mesh generator using a
minimum-cost perfect-matching algorithm. International Journal for Numerical Meth-
ods in Engineering, vol. 89, no. 9, pages 1102–1119, 2012.

[Remacle 2015] J.-F. Remacle, V. Bertrand and C. Geuzaine. A Two-Level Multithreaded De-
launay Kernel. Procedia Engineering, vol. 124, pages 6 – 17, 2015.

[Ringue 2017] N. Ringue and S. Nadarajah. Optimization-based Anisotropic hp-Adaptation for
High-Order Methods. In 23rd AIAA Computational Fluid Dynamics Conference. 2017.

[Roca 2012] X. Roca, A. Gargallo-Peiró and J. Sarrate. Defining Quality Measures for High-
Order Planar Triangles and Curved Mesh Generation. In W. R. Quadros, editeur, Pro-
ceedings of the 20th International Meshing Roundtable, pages 365–383. Springer Berlin
Heidelberg, 2012.

[Rokos 2015] G. Rokos, G. J. Gorman, K. E. Jensen and P. H. J. Kelly. Thread Par-
allelism for Highly Irregular Computation in Anisotropic Mesh Adaptation. CoRR,
vol. abs/1505.04694, 2015.

[Ruiz-Gironès 2015] E. Ruiz-Gironès, J. Sarrate and X. Roca. Defining an L2-disparity Measure
to Check and Improve the Geometric Accuracy of Non-interpolating Curved High-order
Meshes. Procedia Engineering, vol. 124, pages 122–134, 2015.

[Ruiz-Gironès 2016a] E. Ruiz-Gironès, X. Roca and J. Sarrate. High-order mesh curving by
distortion minimization with boundary nodes free to slide on a 3D CAD representa-
tion. Computer-Aided Design, vol. 72, pages 52 – 64, 2016. 23rd International Meshing
Roundtable Special Issue: Advances in Mesh Generation.

http://www.pointwise.com/
http://www.pointwise.com/

Bibliography 135

[Ruiz-Gironès 2016b] E. Ruiz-Gironès, J. Sarrate and X. Roca. Generation of curved high-order
meshes with optimal quality and geometric accuracy. Procedia engineering, vol. 163, pages
315–327, 2016.

[Rumsey] C. L. Rumsey, J. P. Slotnick and A. J. Sclafani. Overview and Summary of the Third
AIAA High Lift Prediction Workshop. In 2018 AIAA Aerospace Sciences Meeting.

[Sagaut 2001] P. Sagaut. Large-eddy simulation for incompressible flows? an introduction.
Springer, 2001.

[Sahni 2010] O. Sahni, X. J. Luo, K. E. Jansen and M. S. Shephard. Curved Boundary Layer
Meshing for Adaptive Viscous Flow Simulations. Finite Elem. Anal. Des., vol. 46, no. 1-2,
pages 132–139, January 2010.

[Schroeder 2006] W. J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. P. Pebay,
R. O’Bara and S. Tendulkar. Methods and framework for visualizing higher-order fi-
nite elements. IEEE Transactions on Visualization and Computer Graphics, vol. 12,
no. 4, pages 446–460, 2006.

[Sharbatdar 2013] M. Sharbatdar and C. Ollivier Gooch. Anisotropic mesh adaptation: recov-
ering quasi-structured meshes. AIAA Paper , vol. 2013-0149, 2013.

[Shephard 2013] M.S. Shephard, C. Smith and J.E. Kolb. Bringing HPC to Engineering Inno-
vation. Computing in Science Engineering, vol. 15, no. 1, pages 16–25, Jan 2013.

[Sherwin 2002] S. J. Sherwin and J. Peiró. Mesh generation in curvilinear domains using high-
order elements. International Journal for Numerical Methods in Engineering, vol. 53,
no. 1, pages 207–223, 2002.

[Shu 1988] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., vol. 77, pages 439–471, 1988.

[Si 2015] H. Si. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans.
Math. Softw., vol. 41, no. 2, pages 11:1–11:36, February 2015.

[Slotnick 2014] J P Slotnick, A Khodadoust, J J Alonso, D L Darmofal, W D Gropp, E A Lurie
and D J Mavriplis. CFD vision 2030 study: A Path to Revolutionary Computational
Aerosciences, 2014.

[Sokolov 2017] D. Sokolov, N. Ray, L. Untereiner and B. Lévy. Hexahedral-dominant Meshing.
ACM Trans. Graph., vol. 36, no. 4, 2017.

[Tam 2000] A. Tam, D. Ait-Ali-Yahia, M.P. Robichaud, M. Moore, V. Kozel and W.G. Habashi.
Anisotropic mesh adaptation for 3D flows on structured and unstructured grids. Comput.
Methods Appl. Mech. Engrg., vol. 189, pages 1205–1230, 2000.

[TecPlot Inc.] TecPlot Inc. TecPlot. https://www.tecplot.com/.

https://www.tecplot.com/

136 Bibliography

[Toulorge 2013] Thomas Toulorge, Christophe Geuzaine, Jean-François Remacle and Jonathan
Lambrechts. Robust Untangling of Curvilinear Meshes. J. Comput. Phys., vol. 254, pages
8–26, December 2013.

[Toulorge 2016] T. Toulorge, J. Lambrechts and J.-F. Remacle. Optimizing the geometrical
accuracy of curvilinear meshes. Journal of Computational Physics, vol. 310, pages 361 –
380, 2016.

[Tremel 2007] U. Tremel, K.A. Sørensen, S. Hitzel, H. Rieger, O. Hassan and N.P. Weatherill.
Parallel remeshing of unstructured volume grids for CFD applications. International
Journal for Numerical Methods in Fluids, vol. 53, no. 8, pages 1361–1379, 2007.

[Tristano 1998] J. R. Tristano, S. J. Owen and S. A. Canann. Advancing front surface mesh
generation in parametric space using a riemannian surface definition. In Proceedings of
the 7th International Meshing Roundtable, 1998.

[Turner 2016] M. Turner, J. Peirò and D. Moxey. A Variational Framework for High-order Mesh
Generation. Procedia Engineering, vol. 163, no. Supplement C, pages 340 – 352, 2016.
25th International Meshing Roundtable.

[Vallet 2007] M.-G. Vallet, C.-M. Manole, J. Dompierre, S. Dufour and F. Guibault. Numerical
comparison of some Hessian recovery techniques. Int. J. Numer. Meth. Engng, vol. 72,
pages 987–1007, 2007.

[Vanharen 2017] J. Vanharen. High-order numerical methods for unsteady flows around complex
geometries. Ph.D. Thesis, Université de Toulouse, 2017.

[Verfürth 1996] R. Verfürth. A review of a posteriori error estimation and adaptative mesh-
refinement techniques. Wiley Teubner Mathematics, New York, 1996.

[Vlachos 2001a] A. Vlachos, P. Jörg, C. Boyd and J. L. Mitchell. Curved PN Triangles. In
Proceedings of the 2001 Symposium on Interactive 3D Graphics, pages 159–166, 2001.

[Vlachos 2001b] A. Vlachos, J. Peters, C. Boyd and J. L. Mitchell. Curved PN Triangles. In
Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D ’01, pages 159–166,
New York, NY, USA, 2001. ACM.

[Wang 2006] D. Wang, O. Hassan, K. Morgan and N. Weatherill. EQSM: An efficient high
quality surface grid generation method based on remeshing. Computer Methods in Applied
Mechanics and Engineering, vol. 195, no. 41-43, pages 5621–5633, 2006.

[Watson 1981] D.F. Watson. Computing the n-dimensional Delaunay tessellation with applica-
tion to Voronoi polytopes. Comput. J., vol. 24, no. 2, pages 167–172, 1981.

[Woodward 1984] P. Woodward and P. Colella. The numerical simulation of two-dimensional
fluid flow with strong shocks. Journal of Computational Physics, vol. 54, no. 1, pages 115
– 173, 1984.

Bibliography 137

[Xie 2013] Z. Q. Xie, R. Sevilla, O Hassan and K. Morgan. The Generation of Arbitrary Order
Curved Meshes for 3D Finite Element Analysis. Comput. Mech., vol. 51, no. 3, pages
361–374, March 2013.

[Yano 2012] M. Yano and D.L. Darmofal. An optimization-based framework for anisotropic
simplex mesh adaptation. J. Comp. Phys., vol. 231, no. 22, pages 7626–7649, 2012.

[Zwanenburg 2017] P. Zwanenburg and S. Nadarajah. On the Necessity of Superparametric
Geometry Representation for Discontinuous Galerkin Methods on Domains with Curved
Boundaries. In 23rd AIAA Computational Fluid Dynamics Conference, 2017.

	Scientific context and challenges
	Supervising activities
	Author's bibliography
	1 An introduction to mesh adaptation for scientific computing
	1.1 An introduction to unstructured mesh generation
	1.1.1 Surface mesh generation
	1.1.2 Volume mesh generation

	1.2 Metric-based mesh adaptation
	1.2.1 Metric tensors in mesh adaptation
	1.2.2 Techniques for enhancing robustness and performance
	1.2.3 Metric-based error estimates
	1.2.4 Controlling the interpolation error
	1.2.5 Geometric estimate for surfaces
	1.2.6 Boundary layers metric

	1.3 Algorithms for generating anisotropic meshes
	1.3.1 Insertion and collapse
	1.3.2 Optimizations and enhancements for unsteady simulations

	1.4 Adaptive algorithm and numerical illustrations
	1.4.1 Adaptive loop
	1.4.2 A wing-body configuration
	1.4.3 Direct sonic boom simulation
	1.4.4 Boundary layer shock interaction
	1.4.5 Double Mach reflection and blast prediction

	1.5 Conclusion

	2 Unique cavity-based anisotropic framework
	2.1 An introduction to standard boundary layer meshing techniques and adaptivity
	2.2 Cavity-based operators
	2.2.1 Extension of standard operators

	2.3 Optimized unit mesh generation
	2.3.1 Collapse
	2.3.2 Creation of edges
	2.3.3 Anisotropic filtering and insertion
	2.3.4 Optimization of the mesh
	2.3.5 Surface approximation

	2.4 A constrained version of the operator
	2.4.1 Boundary layer mesh generation by point insertion
	2.4.2 Possible enhancements with multi-normals and merge
	2.4.3 Boundary layer examples

	2.5 Numerical examples
	2.5.1 Contrail formation
	2.5.2 High-lift CRM
	2.5.3 NASA Rotor 37 and periodic mesh adaptation

	2.6 Conclusion

	3 Metric-aligned, metric-orthogonal and parallelism
	3.1 Mesh adaptation with orthogonality and alignment
	3.2 Metric-orthogonal and metric-aligned anisotropic mesh generation
	3.2.1 Frontal creation of vertices

	3.3 Numerical examples
	3.4 Parallel large scale mesh adaptation
	3.5 Hierarchical Domain partitioning
	3.5.1 Element work evaluation
	3.5.2 Partitioning methods
	3.5.3 Partitions balancing optimization by migration
	3.5.4 Efficiency of the method
	3.5.5 Definition of the interface mesh

	3.6 Numerical Results
	3.7 Conclusion

	4 High-order mesh visualization and adaptation
	4.1 High-order techniques and related issues in meshing and visualization
	4.2 Almost pixel-exact rendering of high-order solution
	4.2.1 High-order elements visualization
	4.2.2 High-order solutions visualization
	4.2.3 Examples of high-ordre rendering

	4.3 High-order mesh adaptation
	4.3.1 Log-simplex method
	4.3.2 Numerical examples

	4.4 High-order surface mesh generation
	4.4.1 Metrics for linear surface mesh generation
	4.4.2 Computation of higher-order metrics
	4.4.3 Meshing process

	4.5 Numerical illustrations

	5 Conclusions and perspectives
	Bibliography

